Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/18069
Title: Hyers-Ulam and Hyers-Ulam-Rassias stability of a class of integral equations on finite intervals
Author: Castro, L. P.
Simões, A. M.
Keywords: Hyers-Ulam stability
Hyers-Ulam-Rassias stability
Banach fixed point theorem
Integral equation
Issue Date: 10-Jul-2017
Publisher: CMMSE
Abstract: The purpose of this work is to study different kinds of stability for a class of integral equations defined on a finite interval. Sufficient conditions are derived in view to obtain Hyers-Ulam stability and Hyers-Ulam-Rassias stability by using fixed point techniques and the Bielecki metric.
Peer review: yes
URI: http://hdl.handle.net/10773/18069
ISBN: 978-84-617-8694-7
Publisher Version: http://cmmse.usal.es/cmmse2017/sites/default/files/volumes/Proceedings_CMMSE_2017_vol_1_6.pdf
Appears in Collections:CIDMA - Comunicações
FAAG - Comunicações

Files in This Item:
File Description SizeFormat 
2017HyersUlamandHyersUlamRassias Stability.pdfMain Article427.98 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.