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Abstract

The purpose of this work is to study different kinds of stability for a class of integral
equations defined on a finite interval. Sufficient conditions are derived in view to obtain
Hyers-Ulam stability and Hyers-Ulam-Rassias stability by using fixed point techniques
and the Bielecki metric.
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1 Introduction

During the last seven decades the concepts of Hyers-Ulam stability and Hyers-Ulam-Rassias
stability for different kinds of functional equations, differential equations, integral equations
and others has been studied in a quite extensive way due to their great number of ap-
plications e.g. in elasticity, semiconductors, heat conduction, fluid flow, scattering theory,
chemical reactions and population dynamic, among others (see [1, 2, 3, 4, 5, 6, 7, 8]). Orig-
inated in 1940 from a famous question raised by S. M. Ulam, the first results of stability of
this type were about to discover when a solution of an equation differing “slightly” from a
given one must be somehow near to the solution of the given equation. A first parcial answer
to this question was given by D. H. Hyers, introducing therefore the so-called Hyers-Ulam
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stability. New directions were introduced by Th. M. Rassias, see [9], introducing therefore
the so-called Hyers-Ulam-Rassias stability.

In this work, we will be devoted to analyse Hyers-Ulam and Hyers-Ulam-Rassias sta-
bility for the following class of integral equations:

b
y(@) = (w,y@:), / k(x,T,y(T),y(a(T)))dT> . zeld) O
and
y(@) = f (x,y(m), I k(mmy(ﬂ,y(a(f)))w)  zelnb) @)

where a and b are fixed real numbers, f : [a,b)xCxC — Cand k : [a,b] X [a,b)] x Cx C — C
are continuous functions, and « : [a, b] — [a, b] is a continuous delay function which therefore
fulfills a(7) < 7 for all 7 € [a, b].

The formal definition of the above mentioned Hyers-Ulam-Rassias stability and Hyers-
Ulam stability are now introduced for the integral equation (1).

If for each function y satisfying

<o(z), =z€lab] (3)

iy(w) - f (m y(z), / bk(x,T,y(T),y(a(T)))dT)

where o is a non-negative function, there is a solution yo of the integral equation and a
constant C' > 0 independent of y and yo such that |y(z) — yo(z)| < Co(z), for all z € [a, b],
then we say that the integral equation (1) has the Hyers-Ulam-Rassias stability.

If for each function y satisfying

}y(w) —f (x,y(x),/abk(ivmy(T),y(a(T)))dT)} <8, w€lab] (4)

where # > 0, there is a solution yg of the integral equation and a constant C' > 0 independent
of y and yo such that |y(z) — yo(z)| < CH, for all z € [a,b], then we say that the integral
equation has the Hyers-Ulam stability.

Some of the present techniques to study the stability of functional equations use a
combination of the following well-known Banach Fixed Point Theorem with a generalized
metric in appropriate settings.

Theorem 1 Let (X,d) be a generalized complete metric space and T : X — X a strictly
contractive operator with a Lipschitz constant L < 1. If there exists a nonnegative integer
k such that d(T* 1z, T*z) < co for some x € X, then the following three propositions hold
true:

i) the sequence (T"x), ey converges to a fired point x* of T';
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) x* is the unigue fized point of T in

X*={yeX: dT*z,y) < oo}; (5)
i) if y € X*, then
1
i [ — .
dy,2") = T—5 d(Ty,y) (6)

Let p > 0 be a constant, we will be using the space Cp([a,d]) of continuous functions
u: [a,b] — C endowed with the generalized Bielecki metric

dp(u,v) = Sup g

z&€(a,b]

We recall that (Cp([a,b]), dp) is a complete metric spaces (cf., [10]).

2 Hyers-Ulam-Rassias Stability

The present section is devoted to present sufficient conditions for the Hyers-Ulam-Rassias
stability of the integral equations (1) and (2).

Theorem 2 Let o : [a,b] — [a,b] a continuous delay function with a(t) <t for allt € [a,b)
and o : [a,b] = (0,00) a non-negative function. Moreover, suppose that f : [a,b]x CxC — C
s a continuous function satisfying the Lipschitz condition

|f (2, u(z), 9(2)) = f(z,v(2), M(z))] < M (Ju(z) - v(z)| + |g(z) — h(z)]) (8)

with M > 0 and the kernel k : [a,b] x [a,b] x Cx C — C is a continuous kernel function
satisfying the Lipschitz condition

Ik (2, t, u(t), u(e(t))) — k2, £, v(t), v(a(t)))| < Llu(t) — v(t)] (9)

with L > 0.
If y € Cy([a, b)) is such that

<o(z), z€lab] (10)

o) - £ (0. [ bk(w,wm,y(a(f)»df)

and M (1 + % (ep(b_a) - 1)) < 1, then there is a unique function yo € Cp([a,b]) such that

b
yole) = ( (o), [k, yo(T),yo(a(T)))dT) (1)

©CMMSE Page 509 of 2288 ISBN: 978-84-617-8694-7



STABILITY OF A CLASS OF INTEGRAL EQUATIONS

and

po(z)
p— Mp— ML(ep(b~a) — 1)

|u(z) — yo(z)| < (12)

for all x € [a, b].
This means that under the above conditions, the integral equation (1) has the Hyers-
Ulam-Rassias stability.

Proof. We will consider the operator T' : Cp([a,b]) — Cp([a, b)), defined by

(Tw) (z) = f (x,u(m), / bk(x,T,u(T),u(a(T)))dT> , (13)

for all € [a,b] and u € Cy([a, b]).
Under the present conditions, we will deduce that the operator T is strictly contractive
with respect to the metric (7). Indeed, for all u,v € Cy([a,b]), we have,

dy (T, Tv) = sup 1LY @)~ (1) (2)]

z€[a,b] ep(z—a)
< M sup u(z) — v(x)|+
0y (ule) (o)

b
/ak(av,7',u(7'),1¢a(cy(7)))df—/lZ k(z,r,v(r), v(e(r)))dr

< M sup —s {fu(z) - o{o)] +

}

/ k(e 7, u(r), ula (T)))—k(xmv(¢>,v<a<f>>)|df}

<M sy iy { ) o)+ 1 / () vl
w M SHPM+Lsup /|u ) — v(r)|dr
z€[a,b] ep(z—a) selat] ep(w )
z€[a,b] eplz—a) ela b ep(m—a) . op(r—a)
- — b
< M{ sup M.}-L sup lu(r) = v(r)| sup 1 / P(T0) g
aclap) €Y relapl  €UTY  selay 2@ Jg
M { dy(u,v) + Ldy(u, ) 1 et -1
= u,v + u,v) su
! PO ey @D p
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- M (1 + % (ep(b—a) - 1)) dy(u, ). (14)

Due to the fact that M (1 + % (ep(b_“) - 1) < 1 it follows that T is strictly contractive.
Thus, we can apply the above mentioned Banach Fixed Point Theorem, which ensures that
we have the Hyers-Ulam-Rassias stability for the integral equation (1). Additionally, (12)
follows from (6) and (10).

For the Volterra integral equation (2) we have the following result.

Theorem 3 Let a: [a,b] — [a,b] a continuous delay function with a(t) <t for all t € [a, b
and o : [a,b] — (0,00) a non-negative function. Moreover, suppose that f : [a,b]xCxC — C
is a continuous function satisfying the Lipschitz condition

|f (2, u(z), 9(z)) - f(z, v(z), h(z))] < M (|u(z) — v(z)| + |g(x) — h(z)]) (15)

with M > 0 and the kernel k : [a,b] X [a,b] x C x C — C is a continuous kernel function
satisfying the Lipschitz condition

|k(2, 1, u(t), u(a(t)) — k(z, 1, 0(t), v(a(®)))] < Llu(t) — v(?)] (16)

with L > 0.
If y € Cy([a, b]) is such that

<o(z), w€lab], (17)

v(0)~ £ (), [ Ko p(ratatn)iar)

eP(b_a)

and M (1 + % (ep(b_a)_l)) < 1, then there is a unique function yo € Cyp([a, b)) such that

wo(z) = f (x,yo(m, / "k, yo(fr),y()(a(r)))df) 18)

and

pep(b_a‘)o'(m)

42) ~90()| < s T T (19)

for all x € [a, b].
This means that under the above conditions, the Volterra integral equation (2) has the
Hyers-Ulam-Rassias stability.
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Proof. We will consider the operator T : Cp([a, b]) — Cp([a, b]), defined by

@m@ng@mu»[%@ﬂmﬂmm&mm), (20)

for all x € [a, b] and u € Cp([a, b]).
Under the present conditions, we will deduce that the operator T is strictly contractive
(with respect to the metric under consideration). Indeed, for all u,v € Cp([a, b]), we have,

|(Tw) (z) = (T) (z)]

dp (Tw,Tv) = sup —pa=a)

z€[a,b]

1
< M sup —— {|lu(z) — vz
<M s oy () — o)

-+

|

/m E(z, 7, u(r), u(a(r)))dr — /aw k(z,7,v(1), v(a(r)))dr
P iy () ~o(2)

= [ et o) -~ K, T,v(T),v(a(T)))JdT}
<M sup o {juto —v<m>|+L/$ |u<f>—v(r>|df}

IA
=
w
=

8

z€[a,b

|u(z) — v(z)]|
- M{xil[lfb]_W”LL o ep(m a) lu —elm)ldr
- u(z) — v(z)| plr—a [U(T) = (7)] .
) M{zi‘ﬁfb] T TP e a>/ T

lu(z) — v(z)] [u(T) — v(7)] p(T—a)
- M{mi?fb]w“i‘ffw o e

1 ep(b a) — ]_

=Ml 4 L) s ey

Il
=
N

L [erlt-a) _q
+ ; (ep(b——a) dp(u, 'U). (21)
Due to the fact that M (1 + % (eﬁ(;a_;g) < 1 it follows that T is strictly contractive.
Thus, we can apply the above mentioned Banach Fixed Point Theorem, which ensures that

we have the Hyers-Ulam-Rassias stability for the Volterra integral equation (2). Addition-
ally, (19) follows from (6) and (17).
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3 Hyers-Ulam Stability

The present section is devoted to present sufficient conditions for the Hyers-Ulam stability
of the integral equations (1) and (2).

Theorem 4 Let a : [a,b] — [a,b] a continuous delay function with a(t) < t for allt € [a, b].
Moreover, suppose that f : [a,b]xCxC — C is a continuous function satisfying the Lipschitz
condition

|f (2, u(z), 9(x)) — flz,v(z), h(x))| < M (Ju(z) - v(z)| + lg(z) — h(z)]) (22)

with M > 0 and the kernel k : [a,b] x [a,b] x Cx C — C is a continuous kernel function
satisfying the Lipschitz condition

k2, t, u(t), w(a(t))) — k(z,t,v(t), v(a(t)))| < Llu(t) — vo(t)] (23)
with L > 0.
If y € Cp([a, b)) is such that

b
y(@) - f (x,ym), / k(x,r,ym,y(a(f)))df)lf <6, aeclab, (24)

where @ > 0 and M (1 + % (eplt—e) 1)) < 1, then there is a unique function yo € Cp([a, b])
such that

b
volz) = f (w,yom), / k(x,t,yo<t>,yo(a(t)>>dt) (25)

and

u(e) ~ yo(e)| < Mf’z T, (26)

for all z € [a,b]
This means that under the above conditions, the integral equation (1) has the Hyers-
Ulam stability.

Proof. We will consider the operator T : Cp([a,b]) — Cp([a,b]), defined by

(Tu) (z) = f (a:,u(a:),/ab k(:c,r,u(r),u(a(7)))d7’) , (27)

for all z € [a,b] and u € Cp([a, b]).
By the same above procedure we have T strictly contractive with respect to the metric

(7) due to the fact that M (1 + % (e”(b_”’) — 1)) < 1. Thus, we can again apply the Banach
Fixed Point Theorem, which ensures that we have the Hyers-Ulam stability for the integral
equation with (26) being obtained by using (6) and (24).
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Now, we consider the Volterra integral equation (2).

Theorem 5 Leta : [a,b] — [a,b] a continuous delay function with a(t) <t for allt € [a, b].
Moreover, suppose that f : [a,b] xCxC — C is a continuous function satisfying the Lipschitz
condition

|f(z, u(z), 9(2)) — f(z,v(x), h(z))] < M (|Ju(z) — v(z)| + |9(z) — h(z)]) (28)

with M > 0 and the kernel k : [a,b] X [a,b] x C x C — C is a continuous kernel function
satisfying the Lipschitz condition

k2, t, u(t), w(a(t)) — k(z,t, v(t), v(e(t)))] < Llu(t) — v(t)] (29)

with L > 0.
If y € Cyp([a, b]) is such that

\y@c) 1 (sv@), [ ko ry() el )ir )| <6, 2 o) (30)

where 8 > 0 and M (1 + % (%)) < 1, then there is a unique function yo € Cp([a,b])
such that

wo(z) = f (x (@), [ Kzt (o) yo(a<t)>>dt) (31)

and
pep(b_a’) 6

) =0 < Go=ar — d) - ML 1) %2

for all z € [a, b]
This means that under the above conditions, the Volterra integral equation (2) has the
Hyers-Ulam stability.

Proof. We will consider the operator T : Cy([a,b]) — Cp([a,b]), defined by

(Tu)(z)=f (x,u(x),/j k(a:,T,u(T),u(a(T)))dT) , (33)

for all z € [a,b] and u € Cp([a, b]).
By the same above procedure we have T strictly contractive (with respect to the met-

ric under consideration) due to the fact that M (1 + % ( ez;t(::),,jl

again apply the Banach Fixed Point Theorem, which ensures that we have the Hyers-Ulam
stability for the integral equation with (32) being obtained by using (6) and (30).

< 1. Thus, we can

Remark 6 Is possible analyse the Hyers-Ulam-Rassias stability of the integral equation but
defined on infinite intervals. These results will be presented in a future work.
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