Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/35389
Title: | Non-symmetric number triangles arising from hypercomplex function theory in Rn+1 |
Author: | Cação, Isabel Falcão, M. Irene Malonek, Helmuth R. Tomaz, Graça |
Keywords: | Non-symmetric Pascal triangle Clifford algebra Recurrence relation |
Issue Date: | 2022 |
Publisher: | Springer Nature Switzerland AG |
Abstract: | The paper is focused on intrinsic properties of a one-parameter family of non-symmetric number triangles T(n), n ≥ 2, which arises in the construction of hyperholomorphic Appell polynomials. |
Peer review: | yes |
URI: | http://hdl.handle.net/10773/35389 |
DOI: | 10.1007/978-3-031-10536-4_28 |
ISBN: | 978-3-031-10535-7 |
Publisher Version: | https://link.springer.com/chapter/10.1007/978-3-031-10536-4_28 |
Appears in Collections: | CIDMA - Capítulo de livro CHAG - Capítulo de livro |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Artigo-2022-completo.pdf | 267.57 kB | Adobe PDF | ![]() |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.