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1 Introduction

A one-parameter family of non-symmetric Pascal triangles was considered in
[8] and a set of its basic properties was proved. Such family arises from studies
on generalized Appell polynomials in the framework of Hypercomplex Function
Theory in R

n+1, n ≥ 1, (cf. [7]). If n ≥ 2, it is given by the infinite triangular
array, T (n), of rational numbers

T k
s (n) =

(
k

s

)
(n+1

2 )k−s(n−1
2 )s

(n)k
, k = 1, 2, . . . , ; s = 0, 1, . . . , k, (1)

where (a)r := a(a + 1) . . . (a + r − 1), for any integer r ≥ 1, is the Pochhammer
symbol with (a)0 := 1, a ≥ 0. If n = 1, then the triangle degenerates to a unique
column because T k

0 (1) ≡ 1 and, as usual T k
s (1) := 0, s > 0.

The non-symmetric structure of this triangle T (n) is a consequence of the
peculiarities of a non-commutative Clifford algebra C�0,n frequently used in prob-
lems of higher dimensional Harmonic Analysis, like the solution of spinor sys-
tems as n-dimensional generalization of Dirac equations and their application in
Quantum Mechanics and Quantum-Field Theory [6].

Hypercomplex Function Theory in R
n+1 is a natural generalization of the clas-

sical function theory of one complex variable in the framework of Clifford Alge-
bras. The case n > 1 extends the complex case to paravector valued functions
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of n hypercomplex non-commutative variables or, by duality, of one paravector
valued variable. For more details we refer to the articles [6,8,9,11].

Important to notice that the use of non-commutative Clifford algebras C�0,n

causes interesting challenges for dealing with polynomials in the hypercomplex
setting. In particular, this concerns a hypercomplex counterpart of the Bino-
mial Theorem and, naturally, some type of a hypercomplex Pascal triangle. In
fact, the non-symmetric T (n), n ≥ 2, plays just the role of the array of coeffi-
cients in a sequence of generalized hypercomplex Appell polynomials as binomial
coefficients are playing in the binomial expansion of (x + iy)k (cf. [8]).

From the other side, the definition of hypercomplex Appell polynomials as
adequate generalization of zk = (x + iy)k together with the characteristic prop-
erty

(zk)′ = kzk−1, k = 1, . . . , and z0 = 1,

formally allows to construct an analogue of the geometric series in hypercomplex
setting. Naturally, for a full analogy to the complex case, this raises the question,
if the kernel of the hypercomplex Cauchy integral theorem derived from Greens
formula in R

n+1 (see [6]) could be expanded in form of that hypercomplex geo-
metric series. The answer is affirmative as it has been shown by methods of
Hypercomplex Function Theory in [3], where the alternating sums of the k−th
row’s entries in T (n), i.e. the one-parameter family of rational numbers

ck(n) :=
k∑

s=0

(−1)sT k
s (n), k = 0, 1, . . . , (2)

plays an important role. Moreover, in [3] it has been shown that the ck(2) coin-
cide exactly with numbers, for the first time used by Vietoris in [14] and playing
an important role in the theory of orthogonal polynomials as well as questions
of positivity of trigonometric sums (see [1]). Consequently, based on a sugges-
tive closed representation of (2) the authors introduced in [4] the sequence of
generalized Vietoris numbers as follows

Definition 1. Let n ∈ N. The generalized Vietoris number sequence is defined
by V(n) := (ck(n))k≥0 with

ck(n) :=
( 12 )� k+1

2 �
(n
2 )� k+1

2 �
. (3)

Remark 1. A general analysis of the coefficients in the sequence V(n) reveals the
following picture. For n = 1 all elements are identically equal to 1 for all k ≥ 0.
For a fixed n > 1 the floor function in the representation of the coefficients (3)
implies a repetition of the coefficient with an even index k = 2m following after
that with an odd index, i.e. c2m−1(n) = c2m(n). The value of the next following
odd-indexed coefficient is decreasing by a variable factor given by the formula

c2m+1(n) =
2m + 1
2m + n

c2m(n). (4)
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For readers, not so much interested in the hypercomplex origins of T (n) or
V(n), we finish our introduction recalling some formulas from [4]. They show the
specific interrelationship of V(n) with the dimension of the space of homogeneous
polynomials in n variables of degree k. This became evident in [4] where Vietoris
numbers (3), contrary to [1], have been studied by real methods without directly
relying on Jacobi polynomials P

(α,β)

k . In fact, we found that the Taylor series
expansion of the rational function

1
(1 − t)γ(1 + t)δ

in the open unit interval with the special values

γ =
n + 1

2
and δ =

n − 1
2

implies the following series development

1

(1 − t)
n+1
2 (1 + t)

n−1
2

=
∞∑

k=0

(n)k

k!
ck(n)tk. (5)

Formula (5) shows that generalized Vietoris numbers (3) appear also in coeffi-
cients of a special power series multiplied by a term that characterizes the space
of homogeneous polynomials in higher dimension. Indeed,

(n)k

k!
=

(
n + k − 1

k

)
= dim Hk(Rn),

where Hk(Rn) is the space of homogeneous polynomials in n variables of degree
k.

As mentioned before,

T k
0 (1) ≡ 1 and T k

s (1) = 0, if 0 < s ≤ k.

and for n = 1 formula (5) is the sum of the ordinary geometric series due to the
special values of γ and δ. Since the geometric series in one real respectively one
complex variable coincide (in the latter case (5) has to be considered as a Taylor
series expansion in the unit complex disc) our hypercomplex approach contains
the complex case as particular case R

1+1 ∼= C.
The important role of ordinary Vietoris numbers, corresponding to n = 2

in (3), in the theory of orthogonal polynomials is discussed in [1]. The paper
of Ruschewey and Salinas [12] shows the relevance of the celebrated result of
Vietoris for a complex function theoretic result in the context of subordination
of analytic functions.

In this paper we deal with interesting properties of T (n). In particular, in
Sect. 2 we present results concerning sums over the entries of the rows of T (n).

The consideration of the main diagonal, in Sect. 3, includes results on series
over its entries and also a recurrence relation which has a certain counterpart
with the ordinary Pascal triangle in the limit case n → ∞. Additionally, in
Sect. 4 some relations to Jacobsthal numbers have been found.
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2 Sums over Entries of the Rows in the Non-symmetric
Number Triangles

The general structure of the triangle in Fig. 1 can easily be recognized by using
the relations between its entries indicated by the arrows in different directions
(see [8, Theorems 3.1–3.3]). In this section we want to complete and extend some
other properties.

Fig. 1. Relations between the first triangle elements

The first results that we mention in this section are relations between (1) and
the corresponding binomial coefficients. We start by listing a set of properties
already presented and proved in [8], but which will be useful to prove new results.

I. Relation between adjacent elements in the s−th column ([8], Theorem 3.1):

T k+1
s (n) =

(k + 1)(n + 2k − 2s + 1)
2(k − s + 1)(n + k)

T k
s (n), (6)

for k = 0, 1, . . . ; s = 0, . . . , k;
II. Relation between adjacent “diagonal” elements ([8], Theorem 3.2):

T k+1
s+1 (n) =

(k + 1)(n + 2s − 1)
2(s + 1)(n + k)

T k
s (n), (7)

for k = 0, 1, . . . ; s = 0, . . . , k;
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III. Relation between adjacent elements in the k−th row ([8], Theorem 3.3):

T k
s+1(n) =

(k − s)(n + 2s − 1)
(s + 1)(n + 2k − 2s − 1)

T k
s (n), (8)

for k = 0, 1, . . . ; s = 0, . . . , k − 1;
IV. Relation between adjacent elements in the k−th row and an element in the

(k − 1)−th row ([8], Theorem 3.5):

(k − s)T k
s (n) + (s + 1)T k

s+1(n) = kT k−1
s (n), (9)

for k = 1, 2, . . . ; s = 0, . . . , k − 1;
V. Partition of the unit ([8], Theorem 3.7):

k∑
s=0

T k
s (n) = 1. (10)

Following the accompanying factors in Fig. 1 along the corresponding paths,
the identity (10) does not come as a surprise. Its proof relies on the definition (1)
and the well known Chu-Vandermonde convolution identity for the Pochhammer
symbols

(x + y)m =
m∑

r=0

(
m

r

)
(x)r(y)m−r. (11)

Remark 2. We observe that, considering n → ∞ in (1), the entries of T (n)
converge to

T k
s (∞) = 2−k

(
k

s

)
. (12)

Because the sum of all binomial coefficients in row k of the ordinary Pascal
triangle equals 2k, (12) relates the limit case of the triangle in Fig. 1 with an
ordinary normalized Pascal triangle whose row sum is constantly 1. The next
formula [5, Theorem 1], is an analogue of a property of binomial coefficients
multiplied by the counting index s in their sum which can be obtained by simply
differentiation of the corresponding binomial formula.

Proposition 1. For k = 0, 1, 2, . . .

k∑
s=0

sT k
s (n) =

k(n − 1)
2n

.

We prove now some new properties of the triangle T (n). The next is another
analogue of a property of binomial coefficients that can also be obtained by
differentiation of the corresponding binomial formula. In this case, the proof uses
some not so trivial relations between binomial coefficients and the Pochhammer
symbol.
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Proposition 2. For k = 0, 1, 2, . . .

k∑
s=0

s2T k
s (n) =

k(k + 1)(n − 1)
4n

.

Proof. Recalling that s
(
k
s

)
= k

(
k−1
s−1

)
and

(
n−1
2

)
s

= n−1
2

(
n+1
2

)
s−1

, from (1) we
can write

k∑
s=0

s2T k
s (n) =

k∑
s=0

s2
(

k

s

)(
n+1
2

)
k−s

(
n−1
2

)
s

(n)k

=
k(n − 1)
2(n)k

k∑
s=1

s

(
k − 1
s − 1

)(n + 1
2

)
k−s

(n + 1
2

)
s−1

.

From s
(

n+1
2

)
s−1

=
(

n+1
2

)
s
−

(
n−1
2

)
s
, we obtain

k∑
s=0

s2T k
s (n) =

k(n − 1)
2(n)k

k∑
s=1

(
k − 1
s − 1

)[(
n+1
2

)
k−s

(
n+1
2

)
s
−

(
n+1
2

)
k−s

(
n−1
2

)
s

]

=
k(n − 1)
2(n)k

[
n+1
2 αk

s (n) − n−1
2 βk

s (n)
]
,

with

αk
s (n) =

k∑
s=1

(
k − 1
s − 1

)(n + 1
2

)
k−s

(n + 3
2

)
s−1

(13)

and

βk
s (n) =

k∑
s=1

(
k − 1
s − 1

)(n + 1
2

)
k−s

(n + 1
2

)
s−1

. (14)

Using in (13) and (14) the Chu-Vandermonde convolution identity (11) with
x = n+3

2 , y = n+1
2 and x = y = n+1

2 , respectively, we get

αk
s (n) = (n + 2)k−1 and βk

s (n) = (n + 1)k−1.

Therefore

k∑
s=0

s2T k
s (n) =

k(n − 1)
4(n)k

[(n + 1)(n + 2)k−1 − (n − 1)(n + 1)k−1]

=
k(n − 1)
4(n)k

(n + 1)k−1(k + 1) =
k(k + 1)(n − 1)

4n
.

	


Remark 3. In the limit case n → ∞, the equalities of the Proposition 1
and Proposition 2 become the well known identities

∑k
s=0 s

(
k
s

)
= 2k−1k and∑k

s=0 s2
(
k
s

)
= 2k−2k(k + 1), respectively ([2, p. 14]) .
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Alternating sums involving (1) can be connected to the Vietoris sequence
introduced in Definition 1, as follows:

Proposition 3. For k = 0, 1, 2, . . . ,

k∑
s=0

(−1)ssT k
s (n) =

{
1−n
2 ck(n), if k is odd

0, if k is even.

Proof. Noting that

k∑
s=0

(−1)ssT k
s (n) =

k−1∑
s=0

(−1)s+1(s + 1)T k
s+1(n),

the result follows from
k−1∑
s=0

(−1)s(s + 1)T k
s+1(n) =

{
1
2

k(n−1)
n+k−1ck−1(n), if k is odd

0, if k is even

(cf. [[8], Theorem 3.9]), and (4). 	

The following proposition shows again the connection with the Pascal trian-

gle, this time with the central binomial coefficients. The result follows immedi-
ately from (6).

Proposition 4.
T 2k

k (n) = T 2k−1
k (n).

Remark 4. We note that, letting n → ∞ in the assertion of Proposition 4, the
identity

(
2k
k

)
= 2

(
2k−1

k

)
is obtained.

3 Recurrences and Series over the Entries in the Main
Diagonal

The richness and beauty of the Pascal triangle and the already mentioned con-
nections with the triangle T (n) motivated the search for new structures and
patterns within T (n).

The family of sequences we are going to consider contains the main diagonal
elements of the triangle (see Fig. 2), where we use the abbreviation

Tk(n) := T k
k (n) =

(
n−1
2

)
k

(n)k
, k = 0, 1, 2, . . . ;n = 2, 3, . . . . (15)

Observe that this sequence can be written in terms of the generalized Vietoris
sequence (3), as

Tk(n) =
c2k(2n)

c2k(n − 1)
=

c2k−1(2n)
c2k−1(n − 1)

.

The next property shows how an element in the main diagonal can be
obtained by simply subtracting two consecutive elements in the first column.
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Tk(n)

T 0
0 1

T 1
0 T 1

1
n− 1
2n

T 2
0 T 2

1 T 2
2

n− 1
4n

T 3
0 T 3

1 T 3
2 T 3

3
(n− 1)(n+ 3)

8n(n+ 2)

T 4
0 T 4

1 T 4
2 T 4

3 T 4
4

(n− 1)(n+ 5)
16n(n+ 2)

T 5
0 T 5

1 T 5
2 T 5

3 T 5
4 T 5

5
(n− 1)(n+ 5)(n+ 7)
32n(n+ 2)(n+ 4)

Fig. 2. The sequence (Tk(n))k≥0 as main diagonal in T (n)

Proposition 5.
Tk(n) = T k−1

0 (n) − T k
0 (n).

Proof. The repeated use of (8), relating consecutive elements in the same row,
allows to write

Tk(n) =
n − 1

n + 2k − 1
T k
0 (n),

while (6) gives

T k
0 (n) =

n + 2k − 1
2n + 2k − 2

T k−1
0 (n).

The result follows at once, by combining these two last identities. 	


Considering now some series built of elements of the main diagonal, we use
(15) and connect this representation formula with special values of the hyperge-
ometric function 2F1 (a, b; c; z) . Gauss’ hypergeometric series is defined by

2F1 (a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!

on the disk |z| < 1 and by analytic continuation elsewhere. In particular on
the circle |z| = 1, Gauss’ series converges absolutely when Re(c − a − b) > 0.
Therefore, choosing a = 1, b = n−1

2 , c = n (we recall that n ≥ 2) and z = ±1, it
follows immediately from (15)

∞∑
k=0

(−1)kTk(n) =2F1

(
1, n−1

2 ;n;−1
)

(16)
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and ∞∑
k=0

Tk(n) =2F1

(
1, n−1

2 ;n; 1
)
. (17)

It seems to be of interest to notice that the last relation admits an explicit
evaluation.

Proposition 6. The series built of all elements of the main diagonal is conver-
gent and its sum is independent of the parameter n, i.e.

∞∑
k=0

Tk(n) = 2.

Proof. We recall Gauss’ identity

2F1 (a, b; c; 1) =
Γ (c)Γ (c − a − b)
Γ (c − a)Γ (c − b)

, Re(c − a − b) > 0,

and rewrite result (17) in the form

∞∑
k=0

Tk(n) =
Γ (n)Γ (n−1

2 )
Γ (n − 1)Γ (n+1

2 )
.

Then the sum of the considered series can simply be read off by using the basic
properties of the Gamma function, Γ (z + 1) = zΓ (z) and Γ (n) = (n − 1)!. 	


The next result about the evaluation of the alternating series (16) for n = 2,
uses the relation of Tk(2) to the celebrated Catalan numbers Ck = 1

k+1

(
2k
k

)
,

which already was mentioned in [5].

Proposition 7. For the particular case of Tk(2), the alternating series (16)
converges and its sum is given by

∞∑
k=0

(−1)kTk(2) = 2(
√

2 − 1).

Proof. According to (15), we have

Tk(2) =
1

22k
Ck. (18)

Applying the Catalan identity

∞∑
k=0

(−1)kCk

4k
= 2(

√
2 − 1),

which follows from the generating function of Catalan numbers g(x) = 1−√
1−4x
2x ,

with x = − 1
4 (see e.g. [13]), we recognize the result as identical with the Catalan

identity. 	
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It is worth noting that all the elements of the triangle T (2) are related to Catalan
numbers. It is enough to use (18) together with the relation (9) in order to obtain
any element of the triangle as a linear combination of Catalan numbers.

Before arriving to another group of general but more intrinsic properties of
the sequence Tk(n) we prove an auxiliary relation of the entries in a row of the
triangle T (n) which culminates in a binomial transform between Tk(n) and the
sequence of the first column. For arbitrary integers n ≥ 2, an element T k

s (n)
of the triangle T (n) is related to the numbers in the main diagonal Tm(n),
m = s, s + 1, . . . , k in the following particular way.

Proposition 8. For k = 0, 1, 2, . . . and r = 0, . . . , k, we have

T k
k−r(n) = (−1)r

(
k

r

) r∑
s=0

(
r

s

)
(−1)sTk−s(n).

Proof. If r = 0, the statement is obvious.
Assume the statement is true for r = i, i.e.,

T k
k−i(n) = (−1)i

(
k

i

) i∑
s=0

(
i

s

)
(−1)sTk−s(n). (19)

Using s = k − (i + 1) in the relation (9), we obtain

(i + 1)T k
k−(i+1)(n) + (k − i)T k

k−i(n) = kT k−1
k−1−i(n).

Combining this relation with the induction hypothesis (19), we get

T k
k−(i+1)(n) = − k − i

i + 1

(
k

i

)
(−1)i

i∑
s=0

(
i

s

)
(−1)sTk−s(n)

+
k

i + 1

(
k − 1

i

)
(−1)i

i∑
s=0

(
i

s

)
(−1)sTk−1−s(n)

= (−1)i+1

(
k

i + 1

)[(i

0

)
Tk(n) +

(
i

i

)
(−1)i+1Tk−(i+1)(n)

]

+ (−1)i+1

(
k

i + 1

)[ i∑
s=1

((
i

s

)
+

(
i

s − 1

))
(−1)sTk−s(n)

]

= (−1)i+1

(
k

i + 1

) i+1∑
s=0

(−1)s

(
i + 1

s

)
Tk−s(n).

That is, the statement also holds for r = i + 1. Hence, by induction, the result
is achieved. 	
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Remark 5. For the case r = k, the equality of Proposition 8 is equivalent to

T k
0 (n) =

k∑
s=0

(−1)s
(
k
s

)
Ts(n), (20)

showing that the sequence
(
T k
0 (n)

)
k≥0

, formed by the elements of the first col-
umn of the triangle T (n) is the binomial transform of the main diagonal sequence
(Tk(n))k≥0. For completeness, we mention also the corresponding inverse bino-
mial transform given by

Tk(n) =
k∑

s=0

(−1)s
(
k
s

)
T s
0 (n).

The binomial transform (20) in some sense completes another relation between
both partial sequences of entries of T (n), namely Proposition 5, where one ele-
ment of the main diagonal is expressed as a difference of two elements of the
first column.

The next property is of another type and could be considered as an intrinsic
property of Tk(n). The proof relies on both, Proposition 5 and relation (20).

Proposition 9. For k = 0, 1, 2, . . .

k∑
s=0

(−1)s

(
k + 1

s

)
Ts+1(n) =

{
2Tk+2(n), if k is even,

0, if k is odd.

Proof. Observe that

k∑
s=0

(−1)s
(
k+1

s

)
Ts+1(n) =

k∑
s=0

(−1)s

((
k + 2
s + 1

)
−

(
k + 1
s + 1

))
Ts+1(n)

=
k+1∑
s=1

(−1)s−1

(
k + 2

s

)
Ts(n) +

k+1∑
s=1

(−1)s

(
k + 1

s

)
Ts(n)

= −
k+2∑
s=0

(−1)s

(
k + 2

s

)
Ts(n) + T0(n) + (−1)k+2Tk+2(n)

+
k+1∑
s=0

(−1)s−1

(
k + 1

s

)
Ts(n) − T0(n).

Combining this with (20) we obtain

k∑
s=0

(−1)s
(
k+1

s

)
Ts+1(n) = −T k+2

0 + (−1)k+2Tk+2(n) + T k+1
0 .
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Finally, the use of Proposition 5 allows to write

k∑
s=0

(−1)s
(
k+1

s

)
Ts+1(n) = (1 + (−1)k)Tk+2(n)

and the result is proved. 	


Proposition 10. For any integer n ≥ 2, Tk(n) is a positive decreasing sequence
convergent to zero.

Proof. From (7), we obtain

Tk+1(n) = 2k+n−1
2k+2n Tk(n) < Tk(n)

and
Tk(n) = Γ (n)

Γ (n−1
2 )

Γ (k+n−1
2 )

Γ (k+n) −→
k→∞

0.

	


Let (Dk(n))k≥0 be the sequence consisting of alternating partial sums of the
main diagonal elements, i.e.

Dk(n) :=
k∑

s=0

(−1)sTs(n).

Proposition 11. The sequence (Dk(n))k≥0, satisfies the recurrence relation

(n + 1)Dk+1(n) − 2(k + n + 1)Dk+2(n) + (2k + n + 1)Dk(n) = 0

with initial conditions

D0(n) = 1; D1(n) =
n + 1
2n

.

Proof. First we note that, for each n ∈ N,

(−1)kTk+1(n) = Dk(n) − Dk+1(n) (21)

and
Dk+2(n) = Dk(n) + (−1)k+1Tk+1(n) + (−1)k+2Tk+2(n). (22)

Applying (21) and (7) to (22), we obtain

Dk+2(n) = Dk+1(n) +
n + 2k + 1

2(n + k + 1)
(Dk(n) − Dk+1(n)),

which leads to the result. 	


The first elements of the sequences (Dk(n))k≥0, for some values of n, are
shown in Fig. 3.
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n Dk(n)

2 1, 3
4
, 7
8
, 51
64
, 109
128

, 415
512

. . .

3 1, 2
3
, 5
6
, 11
15
, 4
5
, 79
105

. . .

4 1, 5
8
, 13
16
, 45
64
, 99
128

, 1485
2048

. . .

. . . . . .

r 1, r+1
2r

, 3r+1
4r

, (r+1)(5r+7)
8r(r+2)

, 11r2+28r+9
16r(r+2)

, (1+r)(107+112r+21r2)
32r(2+r)(4+r)

, . . .

. . . . . .

∞ 1, 1
2
, 3
4
, 5
8
, 11
16
, 21
32

. . .

Fig. 3. First elements of (Dk(n))k≥0; n = 2, 3, 4, r,∞.

4 A Relation to the Sequence of Jacobsthal Numbers

In the limit case n → ∞, Tk(∞) = 2−k and the rational numbers Dk(∞) are
weighted terms of the Jacobsthal sequence (Jk)k≥0 given explicitly by

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, . . .

or generated by its Binet form

Jk =
1
3

(
2k − (−1)k

)
, k = 0, 1, 2, . . .

(cf. [10, page 447]). Next result shows the relation between Dk(∞) and the
sequence of Jacobsthal numbers.

Proposition 12. Consider the Jacobsthal sequence (Jk)k≥0. Then

Dk(∞) =
1
2k

Jk+1, k = 0, 1, 2, . . . .

Proof. The result follows by observing that

Dk(∞) =
k∑

s=0

(−1)sTs(∞) =
k∑

s=0

(−2)−s

=
2
3

(
1 − (−2)−(k+1)

)
=

1
2k

1
3

(
2k+1 − (−1)k+1

)

=
1
2k

Jk+1, k = 0, 1, 2, . . . .
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Considering Proposition 12, the recurrence satisfied by the Jacobsthal sequence,

Jk = Jk−1 + 2Jk−2, k = 2, 3, . . .

J0 = 0; J1 = 1,

is transformed into a simple recurrence of order 2 with constant coefficients for
the elements Dk(∞). Indeed, it holds

Dk(∞) =
1
2

(Dk−1(∞) + Dk−2(∞)) , k = 2, 3, . . .

D0(∞) = 1; D1(∞) =
1
2
.
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Österr. Akad. Wiss. 167, 125–135 (1958). (in German)

https://doi.org/10.1007/978-3-030-26748-3_7

	Non-symmetric Number Triangles Arising from Hypercomplex Function Theory in Rn+1
	1 Introduction
	2 Sums over Entries of the Rows in the Non-symmetric Number Triangles
	3 Recurrences and Series over the Entries in the Main Diagonal
	4 A Relation to the Sequence of Jacobsthal Numbers
	References


