Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/20180
Title: Crystal structure of a compact three-dimensional metal-organic framework based on Cs+ and (4,5-dicyano-1,2-phenylene)bis(phosphonic acid)
Author: Mendes, Ricardo F.
Venkatramaiah, Nutalapati
Tome, Joao P. C.
Almeida Paz, Filipe A.
Keywords: COORDINATION POLYMERS
TOPOLOGIES
Issue Date: 2016
Publisher: INT UNION CRYSTALLOGRAPHY
Abstract: A new metal-organic framework compound, poly[[mu(7)-dihydrogen (4,5-dicyano1,2-phenylene) diphosphonato](oxonium) caesium], [Cs(C8H4N2O6P2)(H3O)](n) (I), based on Cs+ and the organic linker 4,5-dicyano-1,2-phenylene) bis(phosphonic acid, (H(4)cpp), containing two distinct coordinating functional groups, has been prepared by a simple diffusion method and its crystal structure is reported. The coordination polymeric structure is based on a CsO8N2 complex unit comprising a monodentate hydronium cation, seven O-atom donors from two phosphonium groups of the (H(2)cpp)(2-) ligand, and two N-atom donors from bridging cyano groups. The high level of connectivity from both the metal cation and the organic linker allow the formation of a compact and dense three-dimensional network without any crystallization solvent. Topologically (I) is a seven-connected uninodal network with an overall Schafli symbol of {4(17).6(4)}. Metal cations form an undulating inorganic layer, which is linked by strong and highly directional O-H center dot center dot center dot O hydrogen-bonding interactions. These metallic layers are, in turn, connected by the organic ligands along the [010] direction to form the overall three-dimensional framework structure.
Peer review: yes
URI: http://hdl.handle.net/10773/20180
DOI: 10.1107/S2056989016016765
ISSN: 2056-9890
Publisher Version: 10.1107/S2056989016016765
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.