Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/9185
Title: Kalman filtering approach in the calibration of radar rainfall data: a comparative analysis of state space representations
Author: Costa, Marco
Monteiro, Magda
Gonçalves, A. Manuela
Keywords: Kalman filter
State space model
Rainfall estimates
Weather radar
Calibration
Nonparametric estimation
Issue Date: 2012
Publisher: Nova Science Publishers
Abstract: In this chapter it is presented a comparative study of some methods to estimate radar rainfall in real time. This work in- tends to discuss and compare different state space formulations based on a same data set; for instance, the comparison between the mode- ling of the mean field radar rainfall logarithmic bias (Chumchean et al., 2006), a linear radar-rain gauge calibration model (Alpuim & Barbosa, 1999; Costa & Alpuim, 2011) and a power law model (Brown et al., 2001).
URI: http://hdl.handle.net/10773/9185
ISBN: 978-1-62081-551-9
Publisher Version: https://www.novapublishers.com/catalog/product_info.php?products_id=30548
Appears in Collections:ESTGA - Capítulo de livro

Files in This Item:
File Description SizeFormat 
Chapter.ID_5898_6x9.pdfDocumento principal1.04 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.