Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/7652
Title: Positive solutions for nonlinear periodic problems with concave terms
Author: Aizicovici, Sergiu
Papageorgiou, Nikolaos S.
Staicu, Vasile
Keywords: Concave and convex nonlinearities
C-condition
Mountain pass theorem
Local minimizer
Bifurcation-type theorem
Positive solution
Issue Date: 15-Sep-2011
Publisher: Elsevier
Abstract: We consider a nonlinear periodic problem, driven by the scalar p-Laplacian, with a parametric concave term and a Carathéodory perturbation whose potential (primitive) exhibits a p-superlinear growth near +∞, without satisfying the usual in such cases Ambrosetti– Rabinowitz condition. Using critical point theory and truncation techniques, we prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies.
Peer review: yes
URI: http://hdl.handle.net/10773/7652
DOI: 10.1016/j.jmaa.2011.04.013
ISSN: 0022-247X
Appears in Collections:MAT - Artigos

Files in This Item:
File Description SizeFormat 
Aiz_Pa_St_JMAA_381_2011_866_883.pdfFull paper231.11 kBAdobe PDFView/Open    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.