Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/7652
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAizicovici, Sergiupt
dc.contributor.authorPapageorgiou, Nikolaos S.pt
dc.contributor.authorStaicu, Vasilept
dc.date.accessioned2012-04-03T11:30:33Z-
dc.date.issued2011-09-15-
dc.identifier.issn0022-247Xpt
dc.identifier.urihttp://hdl.handle.net/10773/7652-
dc.description.abstractWe consider a nonlinear periodic problem, driven by the scalar p-Laplacian, with a parametric concave term and a Carathéodory perturbation whose potential (primitive) exhibits a p-superlinear growth near +∞, without satisfying the usual in such cases Ambrosetti– Rabinowitz condition. Using critical point theory and truncation techniques, we prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies.pt
dc.language.isoengpt
dc.publisherElsevierpt
dc.rightsrestrictedAccesspor
dc.subjectConcave and convex nonlinearitiespt
dc.subjectC-conditionpt
dc.subjectMountain pass theorempt
dc.subjectLocal minimizerpt
dc.subjectBifurcation-type theorempt
dc.subjectPositive solutionpt
dc.titlePositive solutions for nonlinear periodic problems with concave termspt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage866pt
degois.publication.issue2
degois.publication.issue2pt
degois.publication.lastPage883pt
degois.publication.titleJournal of mathematical analysis and applicationspt
degois.publication.volume381pt
dc.date.embargo10000-01-01-
dc.identifier.doi10.1016/j.jmaa.2011.04.013pt
Appears in Collections:DMat - Artigos

Files in This Item:
File Description SizeFormat 
Aiz_Pa_St_JMAA_381_2011_866_883.pdfFull paper231.11 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.