Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/7652
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aizicovici, Sergiu | pt |
dc.contributor.author | Papageorgiou, Nikolaos S. | pt |
dc.contributor.author | Staicu, Vasile | pt |
dc.date.accessioned | 2012-04-03T11:30:33Z | - |
dc.date.issued | 2011-09-15 | - |
dc.identifier.issn | 0022-247X | pt |
dc.identifier.uri | http://hdl.handle.net/10773/7652 | - |
dc.description.abstract | We consider a nonlinear periodic problem, driven by the scalar p-Laplacian, with a parametric concave term and a Carathéodory perturbation whose potential (primitive) exhibits a p-superlinear growth near +∞, without satisfying the usual in such cases Ambrosetti– Rabinowitz condition. Using critical point theory and truncation techniques, we prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies. | pt |
dc.language.iso | eng | pt |
dc.publisher | Elsevier | pt |
dc.rights | restrictedAccess | por |
dc.subject | Concave and convex nonlinearities | pt |
dc.subject | C-condition | pt |
dc.subject | Mountain pass theorem | pt |
dc.subject | Local minimizer | pt |
dc.subject | Bifurcation-type theorem | pt |
dc.subject | Positive solution | pt |
dc.title | Positive solutions for nonlinear periodic problems with concave terms | pt |
dc.type | article | pt |
dc.peerreviewed | yes | pt |
ua.distribution | international | pt |
degois.publication.firstPage | 866 | pt |
degois.publication.issue | 2 | |
degois.publication.issue | 2 | pt |
degois.publication.lastPage | 883 | pt |
degois.publication.title | Journal of mathematical analysis and applications | pt |
degois.publication.volume | 381 | pt |
dc.date.embargo | 10000-01-01 | - |
dc.identifier.doi | 10.1016/j.jmaa.2011.04.013 | pt |
Appears in Collections: | DMat - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Aiz_Pa_St_JMAA_381_2011_866_883.pdf | Full paper | 231.11 kB | Adobe PDF | ![]() |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.