Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/40127
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSkrodczky, Kaipt_PT
dc.contributor.authorAntunes, Margarida M.pt_PT
dc.contributor.authorZhu, Qingjunpt_PT
dc.contributor.authorValente, Anabela A.pt_PT
dc.contributor.authorPinna, Nicolapt_PT
dc.contributor.authorRusso, Patrícia A.pt_PT
dc.date.accessioned2024-01-12T13:58:50Z-
dc.date.available2024-01-12T13:58:50Z-
dc.date.issued2023-12-
dc.identifier.issn2079-4991pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/40127-
dc.description.abstractThe integration of metal oxide nanomaterials with mesoporous silica is a promising approach to exploiting the advantages of both types of materials. Traditional synthesis methods typically require multiple steps. This work instead presents a fast, one-step, template-free method for the synthesis of metal oxides homogeneously dispersed within mesoporous silica, including oxides of W, Ti, Nb, Ta, Sn, and Mo. These composites have tunable metal oxide contents, large surface areas, and wide mesopores. The combination of Nb2O5 nanoparticles (NPs) with SiO2 results in an increased surface area and a larger number of acid sites compared to pure Nb2O5 NPs. The surface texture and acidity of the silica-niobia composites can be tuned by adjusting the Nb/Si molar ratio. Moreover, the silica provides protection to the niobia NPs, preventing sintering during thermal treatment at 400 °C. The silica-niobia materials exhibit superior performance as catalysts in the aldol condensation of furfural (Fur) with acetone compared to pure niobia, leading to an up to 62% in product yield. Additionally, these catalysts show remarkable stability, retaining their performance over multiple runs. This work demonstrates the potential of the proposed synthesis approach for preparing more sustainable, high-performance, durable, and stable nanoscale metal oxide-based catalysts with a tunable composition, surface area, and active site density.pt_PT
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50011%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50011%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0006%2F2020/PTpt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.titleSingle-Step Formation of Metal Oxide Nanostructures Wrapped in Mesoporous Silica and Silica-Niobia Catalysts for the Condensation of Furfural with Acetonept_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.issue23pt_PT
degois.publication.titleNanomaterialspt_PT
degois.publication.volume13pt_PT
dc.identifier.doi10.3390/nano13233046pt_PT
dc.identifier.essn2079-4991pt_PT
dc.identifier.articlenumber3046pt_PT
Appears in Collections:CICECO - Artigos
DQ - Artigos

Files in This Item:
File Description SizeFormat 
nanomaterials-13-03046 (1).pdfSingle-Step Formation of Metal Oxide Nanostructures Wrapped in Mesoporous Silica and Silica–Niobia Catalysts for the Condensation of Furfural with Acetone5.07 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.