Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/35603
Title: Impact of atomic layer deposited TiO2 on the photocatalytic efficiency of TiO2/w-VA-CNT nanocomposite materials
Author: Oliveira, Inês
Silva, Ricardo M.
Rodrigues, Joana
Correia, Maria R.
Monteiro, Teresa
Faria, Joaquim L.
Silva, Rui F.
Silva, Cláudia G.
Issue Date: 1-Jun-2022
Publisher: Royal Society of Chemistry
Abstract: Titanium oxide (TiO2) has been widely investigated as a photocatalytic material, and the fact that its performance depends on its crystalline structure motivates further research on the relationship between preparation methods and material properties. In this work, TiO2 thin films were grown on non- functionalized wave-like patterned vertically aligned carbon nanotubes (w-VA-CNTs) via the atomic layer deposition (ALD) technique. Grazing incidence X-ray diffraction (GIXRD) analysis revealed that the structure of the TiO2/VA-CNT nanocomposites varied from amorphous to a crystalline phase with increasing deposition temperature, suggesting a “critical deposition temperature” for the anatase crystalline phase formation. On the other hand, scanning transmission electron microscopy (STEM) studies revealed that the non-functionalized carbon nanotubes were conformally and homogeneously coated with TiO2, forming a nanocomposite while preserving the morphology of the nanotubes. X-ray photoelectron spectroscopy (XPS) provided information about the surface chemistry and stoichiometry of TiO2. The photodegradation experiments under ultraviolet (UV) light on a model pollutant (Rhodamine B, RhB) revealed that the nanocomposite comprised of anatase crystalline TiO2 grown at 200 ?C (11.2 nm thickness) presented the highest degradation efficiency viz 55% with an illumination time of 240 min. Furthermore, its recyclability was also demonstrated for multiple cycles, showing good recovery and potential for practical applications.
Peer review: yes
URI: http://hdl.handle.net/10773/35603
DOI: 10.1039/D1RA09410F
ISSN: 2046-2069
Publisher Version: https://pubs.rsc.org/en/content/articlelanding/2022/RA/D1RA09410F
Appears in Collections:CICECO - Artigos
DFis - Artigos
DQ - Artigos
I3N-FSCOSD - Artigos

Files in This Item:
File Description SizeFormat 
d1ra09410f.pdfArtigo1.3 MBAdobe PDFView/Open
d1ra09410f1.pdfInformação Suplementar2.15 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.