Please use this identifier to cite or link to this item:
Title: Self-interactions can stabilize excited boson stars
Author: Sanchis-Gual, Nicolas
Herdeiro, Carlos
Radu, Eugen
Keywords: Boson stars
Numerical relativity
Compact objects
General relativity
Issue Date: 2022
Publisher: IOP Publishing
Abstract: We study the time evolution of spherical, excited (i.e. nodeful) boson star (BS) models. We consider a model including quartic self-interactions, controlled by a coupling Λ. Performing non-linear simulations of the Einstein- (complex)–Klein–Gordon system, using as initial data equilibrium BSs solutions of that system, we assess the impact of Λ in the stability properties of the BSs. In the absence of self-interactions (Λ = 0), we observe the known behaviour that the excited stars in the (candidate) stable branch decay to a nonexcited star without a node; however, we show that for large enough values of the self-interactions coupling, these excited stars do not decay (up to timescales of about t ∼ 104). The stabilization of the excited states for large enough selfinteractions is further supported by evidence that the nodeful states dynamically form through the gravitational cooling mechanism, starting from dilute initial data. Our results support the healing power (against dynamical instabilities) of self-interactions, recently unveiled in the context of the non-axisymmetric instabilities of spinning BSs.
Peer review: yes
DOI: 10.1088/1361-6382/ac4b9b
ISSN: 0264-9381
Appears in Collections:CIDMA - Artigos
GGDG - Artigos

Files in This Item:
File Description SizeFormat 
CQG39(2022)064001.pdf2.37 MBAdobe PDFView/Open

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.