Please use this identifier to cite or link to this item:
Title: On the Randić energy of caterpillar graphs
Author: Cardoso, Domingos M.
Carvalho, Paula
Dı́az, Roberto C.
Rama, Paula
Keywords: Caterpillar graph
Randi´c energy
Issue Date: 2022
Publisher: MATCH, Faculty of Science
Abstract: A caterpillar graph $T(p_1, \ldots, p_r)$ of order $n= r+\sum_{i=1}^r p_i$, $r\geq 2$, is a tree such that removing all its pendent vertices gives rise to a path of order $r$. In this paper we establish a necessary and sufficient condition for a real number to be an eigenvalue of the Randi\'c matrix of $T(p_1, \ldots, p_r)$. This result is applied to determine the extremal caterpillars for the Randi\'c energy of $T(p_1,\ldots, p_r)$ for cases $r=2$ (the double star) and $r=3$. We characterize the extremal caterpillars for $r=2$. Moreover, we study the family of caterpillars $T\big(p,n-p-q-3,q\big)$ of order $n$, where $q$ is a function of $p$, and we characterize the extremal caterpillars for three cases: $q=p$, $q=n-p-b-3$ and $q=b$, for $b\in \{1,\ldots,n-6\}$ fixed. Some illustrative examples are included.
Peer review: yes
DOI: 10.46793/match.87-3.729C
ISSN: 0340-6253
Publisher Version:
Appears in Collections:CIDMA - Artigos
DMat - Artigos
OGTCG - Artigos

Files in This Item:
File Description SizeFormat 
On the Randic Energy of Caterpillar Graphs.pdf415.78 kBAdobe PDFrestrictedAccess

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.