Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/30270
Title: | On strong duality in linear copositive programming |
Author: | Kostyukova, O. I. Tchemisova, T. V. |
Keywords: | Linear Copositive Programming Strong duality Normalized immobile index set Extended dual problem Constraint Qualifications Semi-infinite Programming (SIP) Semidefinite programming (SDP) |
Issue Date: | 23-Apr-2020 |
Publisher: | arXiv |
Abstract: | The paper is dedicated to the study of strong duality for a problem of linear copositive programming. Based on the recently introduced concept of the set of normalized immobile indices, an extended dual problem is deduced. The dual problem satisfies the strong duality relations and does not require any additional regularity assumptions such as constraint qualifications. The main difference with the previously obtained results consists in the fact that now the extended dual problem uses neither the immobile indices themselves nor the explicit information about the convex hull of these indices. The strong duality formulations presented in the paper have similar structure and properties as that proposed in the works of M. Ramana, L. Tuncel, and H. Wolkovicz, for semidefinite programming, but are obtained using different techniques. |
Peer review: | no |
URI: | http://hdl.handle.net/10773/30270 |
Publisher Version: | https://arxiv.org/abs/2004.09865 |
Appears in Collections: | CIDMA - Artigos DMat - Artigos OGTCG - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2004.09865.pdf | 240.22 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.