Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/24082
 Title: Distance matrices on the H-join of graphs: A general result and applications Author: Cardoso, Domingos M.Díaz, Roberto C.Rojo, Oscar Keywords: Graph operationsVetex connectivityDistance matrixEigenvaluesDistance incidence energyDistance Laplacian-energy like Issue Date: 7-Sep-2018 Publisher: Elsevier Abstract: Given a graph $H$ with vertices $1,\ldots ,s$ and a set of pairwise vertex disjoint graphs $G_{1},\ldots ,G_{s},$ the vertex $i$ of $H$ is assigned to $G_{i}.$ Let $G$ be the graph obtained from the graphs $G_{1},\ldots ,G_{s}$ and the edges connecting each vertex of $G_{i}$ with all the vertices of $G_{j}$ for all edge $ij$ of $H.$ The graph $G$ is called the $H-join$ of $G_1,\ldots,G_s$. Let $M(G)$ be a matrix on a graph $G$. A general result on the eigenvalues of $M\left( G\right)$, when the all ones vector is an eigenvector of $M\left( G_{i}\right)$ for $i=1,2,\ldots ,s$, is given. This result is applied to obtain the distance eigenvalues, the distance Laplacian eigenvalues and as well as the distance signless Laplacian eigenvalues of $G$ when $G_{1},\ldots ,G_{s}$ are regular graphs. Finally, we introduce the notions of the distance incidence energy and distance Laplacian-energy like of a graph and we derive sharp lower bounds on these two distance energies among all the connected graphs of prescribed order in terms of the vertex connectivity. The graphs for which those bounds are attained are characterized. Peer review: yes URI: http://hdl.handle.net/10773/24082 DOI: 10.1016/j.laa.2018.08.024 ISSN: 0024-3795 Publisher Version: https://www.sciencedirect.com/science/article/pii/S0024379518304051 Appears in Collections: CIDMA - ArtigosDMat - ArtigosOGTCG - Artigos

Files in This Item:
File Description SizeFormat
1-s2.0-S0024379518304051-main.pdf329.91 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.