Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/22409
Title: New lower bounds for the Randić spread
Author: Andrade, Enide
Freitas, Maria Aguieiras A. de
Robbiano, María
Rodríguez, Jonnathan
Keywords: Matrix spread
Randić spread
Randić matrix
Normalized Laplacian spread
Laplacian spread
Regular graphs
Nullity
Independence number
Issue Date: Jan-2018
Publisher: Elsevier
Abstract: Let $G=\left( \mathcal{V}\left( G\right) ,\mathcal{E}\left( G\right) \right) $ be an $\left( n,m\right) $-graph. The Randi\'{c} spread of $G$, $s_{R}(G)$, is defined as the maximum distance of its Randi\'{c} eigenvalues, disregarding the Randi\'{c} spectral radius of $G$. In this work, we use numerical inequalities and bounds for the matricial spread to obtain relations between this spectral parameter and some structural and algebraic parameters of the underlying graph such as, the sequence of vertex degrees, the nullity, Randi\'{c} index, generalized Randi\'{c} indices and its independence number. In the last section a comparison is presented for regular graphs.
Peer review: yes
URI: http://hdl.handle.net/10773/22409
DOI: 10.1016/j.laa.2017.07.037
ISSN: 0024-3795
Appears in Collections:CIDMA - Artigos

Files in This Item:
File Description SizeFormat 
RSCorrectionsII.pdfdocumento principal302.05 kBAdobe PDFView/Open
artigo.pdf329.59 kBAdobe PDF    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.