Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/20298
Title: Local probing of multiferroics: First-principles study of hyperfine parameters in YMnO3 and YMn2O5
Author: Goncalves, J. N.
Amaral, V. S.
Correia, J. G.
Stroppa, A.
Fenta, A. S.
Baghizadeh, A.
Picozzi, S.
Keywords: ELECTRONIC-STRUCTURE
FERROELECTRICITY
Issue Date: 2014
Publisher: E D P SCIENCES
Abstract: We model the ferroelectric and paraelectric phases in the YMnO3 and YMn2O5, compounds with discussion of the hyperfine parameters at the atomic nuclei: electric field gradient and magnetic hyperfine field, using first-principles density functional theory FP-L/APW+lo method (WIEN2K code). The differences of the changes in hyperfine properties and their correlation due to the onset of polarization in both cases reveal their sensitivity to the different electronic densities changes due to ferroelectricity. In the case of YMnO3 the greater changes appear in the Y and O atoms, while in YMn2O5, where the polarization is induced by a magnetic transition, the parameters at Mn and its bonded O atoms are changed the most. The sensitivity of the parameters to different degrees of approximation in calculations is also discussed.
Peer review: yes
URI: http://hdl.handle.net/10773/20298
DOI: 10.1051/epjconf/20147509002
ISSN: 2100-014X
Publisher Version: 10.1051/epjconf/20147509002
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.