Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/16675
Title: Constrained fractional variational problems of variable order
Author: Tavares, Dina
Almeida, Ricardo
Torres, Delfim F. M.
Keywords: Isoperimetric constraints
Holonomic constraints
Optimization
Fractional calculus
Variable fractional order
Fractional calculus of variations
Issue Date: 16-Jan-2017
Publisher: IEEE
Abstract: Isoperimetric problems consist in minimizing or maximizing a cost functional subject to an integral constraint. In this work, we present two fractional isoperimetric problems where the Lagrangian depends on a combined Caputo derivative of variable fractional order and we present a new variational problem subject to a holonomic constraint. We establish necessary optimality conditions in order to determine the minimizers of the fractional problems. The terminal point in the cost integral, as well the terminal state, are considered to be free, and we obtain corresponding natural boundary conditions.
Peer review: yes
URI: http://hdl.handle.net/10773/16675
DOI: 10.1109/JAS.2017.7510331
ISSN: 2329-9266
Appears in Collections:CIDMA - Artigos
SCG - Artigos

Files in This Item:
File Description SizeFormat 
Tavares_Almeida_Torres-final.pdfMain article261.41 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.