Please use this identifier to cite or link to this item:
Title: A characterization of the weighted version of McEliece-Rodemich-Rumsey-Schrijver number based on convex quadratic programming
Author: Luz, Carlos J.
Keywords: Lovász number
McEliece–Rodemich–Rumsey–Schrijver number
Maximum weight stable set
Combinatorial optimization
Graph theory
Quadratic programming
Issue Date: 31-Dec-2015
Publisher: World Scientific
Abstract: For any graph $G,$ Luz and Schrijver \cite{LuzSchrijver} introduced a characterization of the Lov\'{a}sz number $\vartheta(G)$ based on convex quadratic programming. A similar characterization is now established for the weighted version of the number $\vartheta^{\prime}(G),$ independently introduced by McEliece, Rodemich, and Rumsey \cite{McElieceetal} and Schrijver \cite{Schrijver1}. Also, a class of graphs for which the weighted version of $\vartheta^{\prime}(G)$ coincides with the weighted stability number is characterized.
Peer review: yes
DOI: 10.1142/S1793830915500500
ISSN: 1793-8309
Appears in Collections:CIDMA - Artigos
OGTCG - Artigos

Files in This Item:
File Description SizeFormat 
ArtigoCJLuzDMMA2015.pdfpdf271.74 kBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.