Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/15192
Title: | A simplex like approach based on star sets for recognizing convex-QP adverse graphs |
Author: | Cardoso, Domingos M. Luz, Carlos J. |
Keywords: | Convex quadratic programming in graphs Star sets Graphs with convex-QP stability number Simplex-like approach |
Issue Date: | Jan-2016 |
Publisher: | Springer |
Abstract: | A graph G with convex-QP stability number (or simply a convex-QP graph) is a graph for which the stability number is equal to the optimal value of a convex quadratic program, say P(G). There are polynomial-time procedures to recognize convex-QP graphs, except when the graph G is adverse or contains an adverse subgraph (that is, a non complete graph, without isolated vertices, such that the least eigenvalue of its adjacency matrix and the optimal value of P(G) are both integer and none of them changes when the neighborhood of any vertex of G is deleted). In this paper, from a characterization of convex-QP graphs based on star sets associated to the least eigenvalue of its adjacency matrix, a simplex-like algorithm for the recognition of convex-QP adverse graphs is introduced. |
Peer review: | yes |
URI: | http://hdl.handle.net/10773/15192 |
DOI: | 10.1007/s10878-014-9745-x |
ISSN: | 1382-6905 |
Appears in Collections: | CIDMA - Artigos OGTCG - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
art_10.1007_s10878-014-9745-x.pdf | Printed version - full text | 404.58 kB | Adobe PDF | ![]() |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.