Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/4313
Title: A Numerical Tool for Multiattribute Ranking Problems
Author: Cardoso, D.M.
De Sousa, J.F.
Keywords: Linear extensions
Posets
Computational methods
Linear programming
Multiattribute ranking problems
Pairwise imprecise judgements
Issue Date: 2003
Publisher: Wiley-Blackwell
Abstract: A large variety of techniques have been developed to solve or approximate the solution of multiattribute ranking problems. From such techniques, several implicit or explicit partial orders, defined on the same set of alternatives, are obtained (in many cases, by pairwise comparisons) with the goal of determining a linear order. Often, this goal is attained by assigning positive weights to each partial order relation. However, the imprecise judgments of the pairwise comparisons as well as other factors lead to inconsistencies which have been analyzed in an extensive literature devoted to this type of problem. In this paper, numerical results about linear extensions of weighted sum relations are applied to the recognition of pairwise imprecise judgments between alternatives as well as to the confirmation of a ranking solution as a linear extension of a quasi-order defined by a weighted sum of binary preference relations. © 2003 Wiley Periodicals, Inc.
Peer review: yes
URI: http://hdl.handle.net/10773/4313
ISSN: 0028-3045
Publisher Version: http://onlinelibrary.wiley.com/doi/10.1002/net.10074/abstract
Appears in Collections:MAT - Artigos

Files in This Item:
File Description SizeFormat 
CardosoFreire2003.pdfElectronic Version112.37 kBAdobe PDFView/Open    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.