Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/4254
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCardoso, D.M.pt
dc.contributor.authorPinheiro, S.J.pt
dc.date.accessioned2011-11-04T11:28:48Z-
dc.date.issued2009-
dc.identifier.issn1571-0653pt
dc.identifier.urihttp://hdl.handle.net/10773/4254-
dc.description.abstractConvex quadratic programming upper bounds on the size of k-regular induced subgraphs are analyzed and a necessary and sufficient condition for such upper bounds being tight is introduced. Based on this approach, new spectral upper bounds on the order of maximum size k-regular induced subgraphs are deduced. Related open problems and a few computational experiments are presented. © 2009 Elsevier B.V. All rights reserved.pt
dc.description.sponsorshipCEOCpt
dc.description.sponsorshipFCTpt
dc.description.sponsorshipFEDER/POCI 2010pt
dc.language.isoengpt
dc.publisherElsevierpt
dc.relation.urihttp://www.scopus.com/inward/record.url?eid=2-s2.0-61549084686&partnerID=40&md5=e9c15235b3cfefb22e29196d3431133a-
dc.rightsrestrictedAccesspor
dc.subject2-factorspt
dc.subjectgraph spectrapt
dc.subjectindependent setspt
dc.subjectinduced matchingspt
dc.subjectprogramming involving graphspt
dc.titleSpectral upper bounds on the size of k-regular induced subgraphspt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage3pt
degois.publication.issueC-
degois.publication.lastPage10pt
degois.publication.titleElectronic Notes in Discrete Mathematicspt
degois.publication.volume32pt
dc.date.embargo10000-01-01-
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S1571065309000031*
Appears in Collections:MAT - Artigos

Files in This Item:
File Description SizeFormat 
CardosoPinheiro2009.pdfElectronic Version232.42 kBAdobe PDF    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.