Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/40231
Title: Development of energy-saving innovative hydraulic mortars reusing spent coffee ground for applications in construction
Author: Saeli, Manfredi
Capela, Marinélia N.
Piccirillo, Clara
Tobaldi, David M.
Seabra, M. Paula
Scalera, Francesca
Striani, Raffaella
Corcione, Carola Esposito
Campisi, Tiziana
Keywords: Bio-composite mortar
Spent coffee grounds
Waste recycling
Hydraulic binder
Cost-analysis
Energy material
Issue Date: 1-May-2023
Publisher: Elsevier
Abstract: This paper reports the development of green bio-composite mortars, obtained reusing spent coffee ground (SCG), an agri-food residue, in the light of the Circular Economy approach. This process can boost the sustainability in Construction and proposes an alternative to SCG disposal in landfill, potentially dangerous to humans and the environment. For the first time, specimens were produced and compared using different blends of conventional hydraulic binders (ordinary Portland cement and natural hydraulic lime); SCG partially substituted sand (up to 15 wt%, with a 2.5% increment) for the aggregate mix. The manufacturing process was performed at ambient conditions (20 °C, 65% RH) resulting highly sustainable, and consisted of simple operative steps reproducible in a real building site. The prepared mixes were fully characterised to assess their technological potentials in construction. Morphology analysis, performed by Scanning Electron Microscopy (SEM), showed SCG addition led to a more compact structure. Considering the functional properties, results widely range on binder blend base, offering various concrete applications; it was observed that with SCG addition, despite a decrease in the bulk density (up to 26%), the mechanical performance still remained suitable for proper masonry applications, according to the relevant standards (class of resistance M2.5-M10). A light water imbibition increase was registered (about 5%) while a significant decrease of the capillarity index was seen. Moreover, a robust thermal conductivity reduction was observed (up to 72%), making the mortars highly suitable for energy-saving uses in building. Finally, a reduction in the manufacturing cost (up to 8%) was calculated, granting significant financial saving in light of the industrial symbiosis. These encouraging results showed that reusing SCG not only provides numerous benefits to the overall building performance and management but it is also a valid alternative to usual SCG disposal. The high amount of reused bio-waste significantly widens the knowledge of greener and more efficient building sector, making the prepared mortars promising candidates for the Minimum Environmental Criteria certification, in light of the recent EU regulations, and in line with the principles of the Circular Economy.
Peer review: yes
URI: http://hdl.handle.net/10773/40231
DOI: 10.1016/j.jclepro.2023.136664
ISSN: 0959-6526
Appears in Collections:CICECO - Artigos
DEMaC - Artigos

Files in This Item:
File Description SizeFormat 
1-s2.0-S0959652623008223-main.pdf7.11 MBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.