Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/39498
Title: Development of nanofabrication processes for light management strategies in ultrathin CIGS solar cells
Other Titles: Desenvolvimento de processos de nanofabricação para estratégias de manipulação de luz em células solares ultrafinas de CIGS
Author: Ribeiro, Enzo de Jesus
Advisor: Salomé, Pedro Manuel Parracho
Teixeira, Jennifer Cláudia Passos
Keywords: Nanoimprint lithography
Light management strategies
CIGS
Moth eye
Photonic crystals
Defense Date: 7-Jul-2023
Abstract: The ever-increasing global energy demand requires an urgent need for sustainable energy sources, for which photovoltaics technology is a strong contender. Within this framework, Cu(In,Ga)Se₂ (CIGS) solar cells are amongst the best performing thin-film technologies, allowing for building-integrated photovoltaics and space applications. To reduce production costs, an ultrathin absorber thickness is required due to In and Ga scarcity. However, the incomplete light absorption inherent to ultrathin absorbers demands light management strategies to improve light absorption, which, in turn, requires high resolution lithography techniques to develop subwavelength schemes. Hence, the present work aims to address and overcome challenges regarding the development of a cost-efficient process-flow for the nanofabrication of front and rear light management architectures through nanoimprint lithography (NIL). Front light management was addressed through a broadband anti-reflective (AR) Moth Eye (ME) architecture, for which an ME master stamp was implemented followed by the optimisation of the pattern transfer to different surfaces. Finite-difference time-domain (FDTD) simulations predict a broadband AR effect with the integration of the ME pattern into an ultrathin CIGS’s top layer, resulting in an improved short circuit current density of 0.45 mA cmˉ² over a reference cell. Rear light management was approached through photonic crystals (PC) light scattering schemes, silicon oxide pillars (PL) and hemispheres (HS), to be implemented on the solar cell’s rear contact. FDTD guided the PC’ optimal dimensions that provided the highest optical gain, up to 4.06 mA cmˉ², for each PC solar cell configuration, relative to a reference cell, which were considered for the development of PL and HS structures. To develop such architectures, the challenges in obtaining the PL and HS NIL master stamps were first addressed, followed by the pattern transfer on to proof of concept substrates. During this Thesis, NIL master stamps for both front and rear light management architectures were successfully established, from which four architectures were developed: AR ME, and light scattering PL, conical HS, and ellipsoid HS. All the considered architectures presented optical gains, relative to reference samples without light management, through a decrease in relative total reflectance and increase in relative total transmittance for the ME architecture, and increase in relative diffuse reflectance/transmittance for the PC architectures, showing an efficient AR effect and light scattering, crucial for ultrathin CIGS to fulfil its potential, with PL as the most promising architecture to provide the best optical gain.
O crescente consumo energético exige uma necessidade urgente de fontes de energia sustentáveis, entre as quais a tecnologia fotovoltaica aparece como uma forte candidata. Neste âmbito, as células solares baseadas em Cu(In,Ga)Se₂ (CIGS) estão entre as tecnologias de filme fino com melhor desempenho, permitindo a sua integração no espaço e em edifícios. Para reduzir os custos de produção, é necessária uma espessura da camada absorvente ultrafina devido à escassez de In e Ga. No entanto, a absorção incompleta de luz inerente a camadas absorventes ultrafinas exige estratégias para melhorar a absorção de luz, que, por sua vez, requerem técnicas de litografia de alta resolução para desenvolver esquemas com dimensões da ordem do comprimento de onda da luz. Assim, o presente trabalho tem como objetivo abordar e superar os desafios relacionados com o desenvolvimento de processos de nanofabricação de baixo-custo para produção de arquiteturas de manipulação frontal e posterior da luz através de litografia de nanoimpressão (NIL). Uma estratégia anti-refletora (AR) baseada numa arquitetura Moth Eye (ME) foi desenvolvida para manipulação frontal da luz, para a qual foi implementado um molde ME otimizado para NIL, seguido da transferência do padrão para diferentes superfícies. Simulações baseadas no método de diferenças finitas no domínio do tempo (FDTD) preveem um efeito AR ao longo da região de interesse com a integração do padrão ME na camada superior de uma célula ultrafina de CIGS, resultando numa melhoria na densidade de corrente de curto-circuito de 0,45 mA cmˉ², relativamente a uma célula de referência. Estratégias para manipulação posterior da luz incluíram esquemas para dispersão de luz através de cristais fotónicos (PC), pilares (PL) e semiesferas (HS) de óxido de silício, a serem implementados no contacto posterior da célula solar. As simulações baseadas em FDTD indicaram as dimensões ótimas para as quais os PC proporcionam o maior ganho ótico, até 4,06 mA cmˉ², para as respetivas configurações, em relação a uma célula de referência, sendo consideradas para o desenvolvimento de estruturas PL e HS. Para desenvolver tais arquiteturas, os moldes usados no NIL para PL e HS foram inicialmente estabelecidos, seguidos pela transferência destes PC para substratos que serviram como prova de conceito. Ao longo desta tese, os moldes usados no NIL para arquiteturas de manipulação frontal e posterior da luz foram estabelecidos com sucesso, a partir dos quais quatro arquiteturas foram desenvolvidas: ME para o efeito de AR e PL, HS cónicas e HS elipsoides para dispersão de luz. Foram obtidos ganhos óticos, em relação às amostras de referência sem manipulação de luz, através de uma diminuição na refletância total relativa e aumento na transmitância total relativa para a arquitetura ME, e aumento na refletância/transmitância difusa relativa para as arquiteturas de PC, mostrando um efeito AR e dispersão de luz eficientes, crucial para células ultrafinas de CIGS atingirem o seu potencial, sendo que PL é a arquitetura mais promissora para providenciar o maior ganho ótico.
URI: http://hdl.handle.net/10773/39498
Appears in Collections:UA - Dissertações de mestrado
DFis - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
Documento_Enzo_Ribeiro.pdf3.45 MBAdobe PDFembargoedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.