Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/33290
Title: New liquid supports in the development of integrated platforms for immobilization of oxidative enzymes and polydopamine production
Other Titles: Novos suportes líquidos no desenvolvimento de plataformas integradas para a imobilização de enzimas oxidativas e produção de polidopamina
Author: Pereira, Ana Filipa Soares
Advisor: Tavares, Ana Paula Mora
Martins, Guadalupe Freire
Keywords: Laccase
Polymerization of dopamine
Polydopamine
Aqueous biphasic systems
Ionic liquids
Integrated process
Defense Date: 6-Dec-2021
Abstract: Enzymatic biocatalysis contributes to more sustainable processes, compared with the traditional chemical processes, as it leads to the production of less toxic residues and side-products. Among the existing enzymatic applications, the polymerization of dopamine is a promising application since it originates polydopamine (PDA), an added-value biopolymer with several applications in different fields. Amongst the several existing applications of PDA, the following should be highlighted: (i) modification and functionalization of surfaces for the immobilization of biomolecules and cell adhesion; (ii) synthesis of polydopamine nanoparticles, important in photothermal therapy (an emergent technique for the treatment of cancer); and (iii) in the field of biomedicine, for drug delivery. However, the conventional method of dopamine polymerization is a time-consuming process and produces PDA films with poor stability, which limits its applications. In contrast, dopamine polymerization by laccase, an oxidative enzyme with applications in various sectors of biotechnology, is a fast and efficient process. Nonetheless, in economic and sustainability terms, the reuse of the biocatalyst is crucial. Based on the exposed, the main objective of this study is the development of an integrated and sustainable platform for the production of PDA, by using laccase as the biocatalyst, allowing the simultaneous separation of this product and the reuse of the enzyme. For this purpose, five aqueous biphasic systems (ABS) composed of polymers, salts and ionic liquids were studied. Preliminary tests of the optimization of some reaction conditions of the enzymatic polymerization, such as pH, temperature and initial dopamine concentration, were performed. It was demonstrated that the higher enzymatic activity is achieved at pH 5.5, 30°C and initial dopamine concentration of 2 mg/mL. It was found that the enzymatic method is a more efficient process when compared with the non-enzymatic one, since for the same reaction time and lower dopamine concentrations it allowed a significantly superior polymerization. It was concluded that the most-promising ABS is composed of polypropylene glycol 400 (PPG 400) and K2HPO4, allowed the separation of laccase and PDA to opposite phases. In addition, it was possible to reuse the laccase, at least in four consecutive cycles, with a polymerization yield of 68.9% in the last cycle.
A biocatálise enzimática contribui para processos mais sustentáveis, em comparação com os processos químicos tradicionais, na medida em que leva à produção de menos resíduos e possíveis subprodutos tóxicos. Entre as diversas aplicações enzimáticas existentes, a polimerização da dopamina é uma aplicação promissora uma vez que origina a polidopamina (PDA), um biopolímero de valor acrescentado com inúmeras aplicações em diferentes setores. Das várias aplicações existentes da PDA, destacam-se: (i) modificação e funcionalização de superfícies para a imobilização de biomoléculas e adesão celular; (ii) síntese de nanopartículas de PDA, importantes na terapia fotodinâmica (uma técnica emergente para o tratamento do cancro); e (iii) no campo da biomedicina, para a administração de medicamentos. No entanto, o método convencional da polimerização da dopamina é um método demorado e origina filmes de PDA com pouca estabilidade, o que limita as suas aplicações. Em contrapartida, a polimerização da dopamina catalisada pela lacase, uma enzima oxidativa com aplicações nos mais variados setores da biotecnologia, é um processo rápido e muito eficiente. No entanto, em termos económicos e de sustentabilidade, é crucial a reutilização do biocatalisador. Face ao exposto, o principal objetivo deste estudo é o desenvolvimento de uma plataforma integrada e sustentável para a produção de PDA, usando a lacase como biocatalisador, que permita simultaneamente a separação deste produto e a reutilização da enzima. Para este fim, foram estudados cinco sistemas aquosos bifásicos (SAB) pela combinação de polímeros, sais e líquidos iónicos. Foram ainda realizados testes preliminares da otimização de alguns parâmetros reacionais do processo enzimático de polimerização da dopamina, tais como o pH, temperatura e concentração inicial de dopamina. Demonstrou-se que a maior atividade enzimática foi alcançada a pH 5.5, 30 °C e concentração inicial de dopamina de 2 mg/mL. Verificou-se que o método enzimático é mais eficiente em comparação com o não-enzimático, na medida em que, para o mesmo tempo de reação e concentrações inferiores de substrato, permitiu uma polimerização significativamente superior. Concluiu-se que o SAB mais promissor é o constituído por polipropileno glicol 400 (PPG 400) e K2HPO4, na medida em que permitiu a separação da PDA e lacase para fases opostas. Além disso, foi possível a reutilização da lacase, pelo menos ao longo de quatro ciclos consecutivos, com um rendimento de polimerização no último ciclo de 68.9%.
URI: http://hdl.handle.net/10773/33290
Appears in Collections:UA - Dissertações de mestrado
DBio - Dissertações de mestrado
DQ - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
Documento_Ana_Filipa_Pereira.pdf1.24 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.