Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/31378
Title: Magnetic mapping for robot navigation in indoor environments
Other Titles: Mapeamento magnético para navegação robótica em ambientes interiores
Author: Almeida, David Sousa
Advisor: Teixeira, Francisco José Curado Mendes
Pedrosa, Eurico Farinha
Keywords: Robot navigation
Localization in indoor environments
Magnetic mapping
Particle filter
Defense Date: 25-Feb-2021
Abstract: Localization has always been one of the fundamental problems in the field of robotic navigation. The emergence of GPS came as a solution for localization systems in outdoor environments. However, the accuracy of GPS is not always sufficient and GPS based systems often fail and are not suited for indoor environments. Considering this, today there is a variety of real time localization technologies. It is quite common to see magnetic anomalies in indoor environments, which arise due to the presence of ferromagnetic objects, such as concrete or steel infrastructures. In the conventional ambient magnetic field based robotic navigation, which uses the direction of the Earth’s magnetic field to determine orientation, these anomalies are seen as undesirable. However, if the environment is rich in anomalies with sufficient local variability, they can be mapped and used as features for localization purposes. The work presented in this dissertation aims at demonstrating that it is possible to combine the odometric measurements of a mobile robot with magnetic field measurements, in order to effectively estimate the position of the robot in real time in an indoor environment. For this purpose, it is necessary to map the navigation space and develop a localization algorithm. First, the issues addressed to create a magnetic map are presented, namely data acquisition, employed interpolation methods and validation processes. Subsequently, the developed localization algorithm, based on a particle filter, is depicted, as well as the respective experimental validation tests.
A localização sempre fui um dos problemas fundamentais a resolver no âmbito da navegação robótica. O surgimento do GPS veio a servir de solução para bastantes sistemas de localização em ambientes exteriores. No entanto, a exatidão do GPS nem sempre é suficiente e os sistemas baseados em GPS falham frequentemente e não são aplicáveis em ambientes interiores. À vista disso, hoje existe uma variedade de tecnologias de localização em tempo real. É bastante comum verificarem-se anomalias magnéticas em ambientes interiores, que provêm de objetos ferromagnéticos, como infraestruturas de betão ou aço. Na navegação robótica baseada na leitura do campo magnético convencional, que utiliza a direção do campo magnético terrestre para determinar a orientação, estas anomalias são vistas como indesejáveis. No entanto, se o ambiente for rico em anomalias com variabilidade local suficiente, estas podem ser mapeadas e utilizadas como caraterísticas para efeitos de localização. O trabalho apresentado nesta dissertação visa a demonstrar que é possível conjugar as medidas odométricas de um robô móvel com medições do campo magnético, para efetivamente localizar o robô em tempo real num ambiente interior. Para esse efeito, é necessário mapear o espaço de navegação e desenvolver um algoritmo de localização. Primeiramente, são apresentadas as questões abordadas para criar um mapa magnético, nomeadamente as aquisições de dados, os métodos de interpolação e os processos de validação. Posteriormente, é retratado o algoritmo de localização desenvolvido, baseado num filtro de partículas, assim como os respetivos testes experimentais de validação.
URI: http://hdl.handle.net/10773/31378
Appears in Collections:UA - Dissertações de mestrado
DETI - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
Documento_David_Almeida.pdf25.12 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.