Please use this identifier to cite or link to this item:
Title: Passivation of interfaces in thin film solar cells: understanding the effects of a nanostructured rear point contact layer
Author: Salomé, Pedro M. P.
Vermang, Bart
Ribeiro-Andrade, Rodrigo
Teixeira, Jennifer P.
Cunha, José M. V.
Mendes, Manuel J.
Haque, Sirazul
Borme, Jêrome
Águas, Hugo
Fortunato, Elvira
Martins, Rodrigo
González, Juan C.
Leitão, Joaquim P.
Fernandes, Paulo A.
Edoff, Marika
Sadewasser, Sascha
Keywords: Cu(In,Ga)Se2 (CIGS)
Thin film solar cells
Issue Date: 23-Jan-2018
Publisher: Wiley
Abstract: Thin film solar cells based in Cu(In,Ga)Se2 (CIGS) are among the most efficient polycrystalline solar cells, surpassing CdTe and even polycrystalline silicon solar cells. For further developments, the CIGS technology has to start incorporating different solar cell architectures and strategies that allow for very low interface recombination. In this work, we study and characterize ultrathin 350 nm CIGS solar cells with a rear interface passivation strategy. The rear passivation was achieved using an Al2O3 nanopatterned point structure. Using the cell results, photoluminescence measurements and detailed optical simulations based on the experimental results, we show that by including the nanopatterned point contact structure, the interface defect concentration lowers, which ultimately leads to an increase of solar cell electrical performance mostly by increase of the open circuit voltage. Gains to the short circuit current are distributed between an increased rear optical reflection and also due to electrical effects. Our approach of mixing several techniques allowed us to make a discussion considering the different passivation gains which has not been done in detail in previous works. A solar cell with a nanopatterned rear contact and a 350 nm thick CIGS absorber provided an average power conversion efficiency close to 10%.
Peer review: yes
DOI: 10.1002/admi.201701101
ISSN: 2196-7350
Appears in Collections:DFis - Artigos
I3N-FSCOSD - Artigos

Files in This Item:
File Description SizeFormat 
Salome_Passivation of interfaces in thin film solar cells understanding.pdf1.26 MBAdobe PDFView/Open

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.