Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/30349
Title: Mesoscale model of the synthesis of periodic mesoporous benzene-silica
Author: Gouveia, José D.
Pérez-Sánchez, Germán
Santos, Sérgio M.
Carvalho, André P.
Gomes, José R. B.
Jorge, Miguel
Keywords: Multi-scale model
Surfactants
Periodic mesoporous organosilicates
Molecular dynamics simulations
Porous materials
Issue Date: Oct-2020
Publisher: Elsevier
Abstract: A coarse-grained (CG) model is developed to reproduce the early stages of the templated synthesis of periodic mesoporous organosilicas (PMO), focusing on benzene as the organic linker. Molecular dynamics simulations of hexadecyltrimethylammonium bromide (CTAB) surfactant in aqueous organosilicate solutions were performed to analyze the micelle formation, growth and aggregation during the synthesis of surfactant-templated PMOs. The CG model parameters were calibrated to reproduce radial density profiles of all-atom CTAB spherical micelles in a solution with benzenesilicates (BZS). Our simulations, with over a thousand surfactants, reproduced the experimental micelle aggregation, promoted and driven by the BZS moieties. The micelle sphere-to-rod transition and the subsequent formation of a hexagonally ordered mesophase were observed and characterized, displaying rod diameters (in the range 38–41 Å) very close to experimental estimates (38 Å). Furthermore, the addition of BZS to a CTAB aqueous solution with spherical micelles at equilibrium promoted the formation of prolate-shaped rods, in accordance with experiments. Subsequent removal of the BZS from the final PMO structure caused the system to revert to the original spherical micelles. In our simulations, the CTAB rods were formed above a 1:5 BZS/CTAB ratio while a ratio of 1:2 was found to be required to induce the hexagonal arrangement of the rods. Overall, this work reinforces the active and cooperative role of organosilicates in the formation of PMO materials.
Peer review: yes
URI: http://hdl.handle.net/10773/30349
DOI: 10.1016/j.molliq.2020.113861
ISSN: 0167-7322
Publisher Version: https://www.sciencedirect.com/science/article/pii/S0167732220330828?via%3Dihub
Appears in Collections:CICECO - Artigos

Files in This Item:
File Description SizeFormat 
Gouveia_PMO_Author_Version.pdf2.26 MBAdobe PDFembargoedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.