Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/29903
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSanchis-Gual, Nicolaspt_PT
dc.contributor.authorZilhão, Miguelpt_PT
dc.contributor.authorHerdeiro, Carlospt_PT
dc.contributor.authorDi Giovanni, Fabriziopt_PT
dc.contributor.authorFont, José A.pt_PT
dc.contributor.authorRadu, Eugenpt_PT
dc.date.accessioned2020-11-25T18:38:52Z-
dc.date.available2020-11-25T18:38:52Z-
dc.date.issued2020-11-15-
dc.identifier.issn2470-0010pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/29903-
dc.description.abstractIf ultralight bosonic fields exist in nature as dark matter, superradiance spins down rotating black holes (BHs), dynamically endowing them with equilibrium bosonic clouds, here dubbed synchronized gravitational atoms (SGAs). The self-gravity of these same fields, on the other hand, can lump them into (scalar or vector) horizonless solitons known as bosonic stars (BSs). We show that the dynamics of BSs yield a new channel forming SGAs. We study BS binaries that merge to form spinning BHs. After horizon formation, the BH spins up by accreting the bosonic field, but a remnant lingers around the horizon. If just enough angular momentum is present, the BH spin up stalls precisely as the remnant becomes a SGA. Different initial data lead to SGAs with different quantum numbers. Thus, SGAs may form both from superradiance-driven BH spin down and accretion-driven BH spin up. The latter process, moreover, can result in heavier SGAs than those obtained from the former: in one example herein, ∼ 18 % of the final system’s energy and ∼ 50 % of its angular momentum remain in the SGA. We suggest that even higher values may occur in systems wherein both accretion and superradiance contribute to the SGA formation.pt_PT
dc.language.isoengpt_PT
dc.publisherAmerican Physical Societypt_PT
dc.relationSpanish Agencia Estatal de Investigación (grant PGC2018- 095984-B-I00)pt_PT
dc.relationGeneralitat Valenciana (PROMETEO/2019/071 and GRISOLIAP/2019/029)pt_PT
dc.relationUIDB/04106/2020pt_PT
dc.relationUIDP/04106/2020pt_PT
dc.relationPTDC/FIS-OUT/28407/2017pt_PT
dc.relationCERN/FISPAR/0027/2019pt_PT
dc.relationUID/FIS/00099/2020pt_PT
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/777740/EUpt_PT
dc.relationUIDB/00099/2020pt_PT
dc.relationIF/00729/2015pt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.titleSynchronized gravitational atoms from mergers of bosonic starspt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.issue10pt_PT
degois.publication.titlePhysical Review Dpt_PT
degois.publication.volume102pt_PT
dc.identifier.doi10.1103/PhysRevD.102.101504pt_PT
dc.identifier.essn2470-0029pt_PT
Appears in Collections:CIDMA - Artigos
DMat - Artigos
GGDG - Artigos

Files in This Item:
File Description SizeFormat 
2007.11584.pdf4.59 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.