Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/29639
Title: Hybrid iterative equalizer for massive MIMO millimeter wave CE-OFDM systems
Other Titles: Equalizador iterativo híbrido para sistemas MIMO CE-OFDM na banda das ondas milimétricas
Author: Enes, Ricardo
Advisor: Silva, Adão Paulo Soares da
Teodoro, Sara
Aguiar, Rui Luís Andrade
Keywords: 5G
CE-OFDM
Full digital architectures
Hybrid architectures
Massive MIMO
mmWave communications
Defense Date: Jul-2019
Abstract: The next generation, the fifth-generation (5G), is expected to deliver unprecedented data transmission speeds, lower latency, and the capacity to connect everything and everyone. However, accomplishing these features faces some challenges, such as the limited availability of bandwidth in the conventional sub-6GHz band. This constraint has induced telecommunications operators and the research community to develop solutions that combine both the use of the millimeter-wave band (mmWave) and massive MIMO systems. These technologies present a symbiotic relationship that can provide the high transmission rates envisioned for future 5G systems and circumvent the scarcity of bandwidth. However, the large number of antennas envisioned for future wireless systems makes it impossible to use a fully digital architecture due to the hardware constraints. Additionally, it is also not resolvable to have a system that works only in the analog domain by employing full analog beamforming since the performance is poor. To overcome these limitations, hybrid analog-digital architectures, where some signal processing is done at the digital level and some left to the analog domain, have been proposed in the literature. In such architectures the number of radiofrequency chains is lower than the number of antennas, thus reducing the hardware complexity. This work addresses the implementation of an iterative hybrid two-step space-frequency receiver structure for multiuser uplink millimeter wave (mmWave) massive MIMO based systems. We adopt constant envelope OFDM (CE-OFDM), a promising modulation technique for future mmWave wireless communications, that enables low-cost power amplification and high efficiency, using highly nonlinear amplifiers. The user terminals (UTs) are equipped with a single radiofrequency (RF) chain. In the transmission we consider two different analog precoders. The first one consists in a set of random analog phase shifters, while the second is based on the average angles of departure of the channel. On the receiver side, we adopted a hybrid analog-digital nonlinear multiuser equalizer, based on the iterative block decision feedback equalization (IB-DFE) principle, designed to remove inter-user and inter-carrier interferences efficiently. The results show that the proposed equalizer converges requiring only a few numbers of iterations. Furthermore, the achievable performance is close to the one obtained for the full digital counterpart.
A próxima geração, a quinta (5G), irá oferecer velocidades de transmissão de dados sem precedentes, baixa latência e a capacidade de conectar tudo e todos. No entanto, de maneira a se garantirem estas funcionalidades, alguns obstáculos têm de ser ultrapassados, destacando-se a escassez de largura de banda nas bandas convencionais sub-6GHz. Esta limitação levou tanto a comunidade científica como as operadoras de telecomunicações a desenvolverem sistemas que combinam sistemas MIMO massivo e a banda das ondas milimétricas. Estas tecnologias apresentam uma relação simbiótica que permite contornar a escassez da largura de banda e alcançar as elevadas taxas de transmissão previstas para os sistemas 5G do futuro. No entanto, o elevado número de antenas previsto para os futuros sistemas de comunicações sem fios torna impraticável a implementação de arquiteturas puramente digitais, tendo em conta as limitações de hardware. Adicionalmente, também não é razoável desenhar-se um sistema que funcione apenas no domínio analógico, implementando beamforming analógico, devido aos maus desempenhos obtidos com este tipo de técnica. Assim, de maneira a se contornarem estas limitações, têm sido propostas na literatura arquiteturas híbridas analógico-digitais, onde parte do processamento de sinal é feito ao nível digital e outra parte é feito no domínio analógico. Neste tipo de arquiteturas, o número de cadeias de radiofrequência é menor do que o número de antenas, reduzindo assim a complexidade a nível de hardware. Esta dissertação aborda a implementação e posterior avaliação de um equalizador iterativo híbrido para sistemas de multiutilizador massive MIMO (mMIMO) que operam na banda de frequências de ondas milimétricas (30- 300GHz). No lado do transmissor, adotou-se como técnica de modulação o CE-OFDM. Esta técnica é dada como promissora para futura utilização em comunicações sem fios na banda de ondas milimétricas. Possibilita não só a aplicação de potência de baixo custo como também garante uma alta eficiência utilizando amplificadores altamente não lineares. Cada terminal de utilizador é equipado com uma única cadeia de rádiofrequência (RF). Na transmissão consideram-se dois tipos de pré-codificadores analógicos. O primeiro consiste numa série de faseadores analógicos, enquanto o segundo se baseia nos ângulos médios de saída de cada cluster. No recetor adotouse a implementação de um equalizador híbrido não linear, multiutilizador, baseado no princípio de equalização iterative block decision feedback (IB- DFE), desenhado para remover eficientemente as interferências entre portadoras e utilizadores. Os resultados apresentados mostram que o equalizador proposto converge após um reduzido número de iterações. Além disso, o desempenho alcançado está próximo do obtido para um sistema totalmente digital.
URI: http://hdl.handle.net/10773/29639
Appears in Collections:DETI - Dissertações de mestrado
UA - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
Documento_Ricardo_Enes.pdf3.75 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.