Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/28771
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGouveia, José D.pt_PT
dc.contributor.authorMorales-García, Ángelpt_PT
dc.contributor.authorViñes, Francescpt_PT
dc.contributor.authorGomes, José R. B.pt_PT
dc.contributor.authorIllas, Francescpt_PT
dc.date.accessioned2020-07-01T09:35:56Z-
dc.date.available2020-07-01T09:35:56Z-
dc.date.issued2020-05-01-
dc.identifier.issn2155-5435pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/28771-
dc.description.abstractThe rate-limiting step for ammonia (NH3) production via the Haber–Bosch process is the dissociation of molecular nitrogen (N2), which requires quite harsh working conditions, even when using appropriate heterogeneous catalysts. Here, motivated by the demonstrated enhanced chemical activity of MXenes— a class of two-dimensional inorganic materials— toward the adsorption of quite stable molecules such as CO2 and H2O, we use density functional theory including dispersion, to investigate the suitability of such MXene materials to catalyze N2 dissociation. Results show that MXenes exothermically adsorb N2, with rather large adsorption energies ranging from −1.11 to −3.45 eV and elongation of the N2 bond length by ∼20%, greatly facilitating their dissociation with energy barriers below 1 eV, reaching 0.28 eV in the most favorable studied case of W2N. Microkinetic simulations indicate that the first hydrogenation of adsorbed atomic nitrogen is feasible at low pressures and moderate temperatures, and that the production of NH3 may occur above 800 K on most studied MXenes, in particular, in W2N. These results reinforce the promising capabilities of MXenes to dissociate nitrogen and suggest combining them co-catalytically with Ru nanoparticles to further improve the efficiency of ammonia synthesis.pt_PT
dc.language.isoengpt_PT
dc.publisherAmerican Chemical Societypt_PT
dc.relationUID/CTM/50011/2019pt_PT
dc.relationPOCI/01/0145/FEDER/007679pt_PT
dc.relationRTI2018-095460-B-I00pt_PT
dc.relationMDM-2017-0767pt_PT
dc.relation2017SGR13pt_PT
dc.relationXRQTCpt_PT
dc.relationCENTRO-01-0145-FEDER-31002pt_PT
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/730897/EUpt_PT
dc.relationINFRAIA-2016-1-730897pt_PT
dc.relationIJCI-2017-31979pt_PT
dc.relationRYC-2012-10129pt_PT
dc.relation2015 ICREA Academia Award for Excellence in University Researchpt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.subject2D Materialspt_PT
dc.subjectAdsorptionpt_PT
dc.subjectAmmonia Synthesispt_PT
dc.subjectClean MXenespt_PT
dc.subjectDensity functional theorypt_PT
dc.subjectMetal Carbides and Nitridespt_PT
dc.subjectMicrokinetic Modelingpt_PT
dc.titleFacile heterogeneously catalyzed nitrogen fixation by MXenespt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.firstPage5049pt_PT
degois.publication.issue9pt_PT
degois.publication.lastPage5056pt_PT
degois.publication.titleACS Catalysispt_PT
degois.publication.volume10pt_PT
dc.relation.publisherversionhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.0c00935pt_PT
dc.identifier.doi10.1021/acscatal.0c00935pt_PT
dc.identifier.essn2155-5435pt_PT
Appears in Collections:CICECO - Artigos

Files in This Item:
File Description SizeFormat 
acscatal2020.pdf1.28 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.