Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/22744
Title: On the higher differentiability of solutions to a class of variational problems of fast growth
Author: Cellina, Arrigo
Staicu, Vasile
Keywords: Variational problems
Regularity of solutions
Second order derivatives
Issue Date: 15-Mar-2018
Publisher: Springer International Publishing AG. Part of Springer Nature.
Abstract: We consider the higher differentiability of a solution $u$ to the problem of minimizing $$\int_{\om}[\Lambda(x ,|\nabla v(x)|) +f(x)v(x)]dx$$ where $\Lambda$ is of fast growth in the second variable, i.e., we assume that $\Lambda(x,t)$ grows in $t$ faster than $t^N$, where $N$ is the dimension of the space. We do not assume conditions limiting above the size of the second derivative of $\Lambda$ with respect to $t$.
Peer review: yes
URI: http://hdl.handle.net/10773/22744
DOI: 10.1007/s00526-018-1323-0
ISSN: 0944-2669
Appears in Collections:CIDMA - Artigos

Files in This Item:
File Description SizeFormat 
CeStPaper_10.1007_s00526-018-1323-0.pdfDocumento principal312.33 kBAdobe PDF    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.