Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/21347
Title: Matrix approach to hypercomplex Appell polynomials
Author: Aceto, Lídia
Malonek, Helmuth R.
Tomaz, Graça
Keywords: Hypercomplex differentiability
Appell polynomials
Creation matrix
Pascal matrix
Issue Date: 2017
Publisher: Elsevier
Abstract: Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.
Peer review: yes
URI: http://hdl.handle.net/10773/21347
DOI: 10.1016/j.apnum.2016.07.006
ISSN: 0168-9274
Appears in Collections:CIDMA - Artigos
CHAG - Artigos

Files in This Item:
File Description SizeFormat 
AcetoMalonekTomaz.pdf165.17 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.