Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/20884
Title: Biomass fly ash effect on fresh and hardened state properties of cement based materials
Author: Rajamma, R.
Senff, L.
Ribeiro, M. J.
Labrincha, J. A.
Ball, R. J.
Allen, G. C.
Ferreira, V. M.
Keywords: HYDRATION PROCESS
WASTE
CONCRETE
PASTE
NANO-SIO2
NANO-TIO2
MORTARS
Issue Date: 2015
Publisher: ELSEVIER SCI LTD
Abstract: Cement pastes and mortars were prepared by replacing ordinary Portland cement with different dosages of biomass fly ashes (0, 10, 20 and 30% BFA) whilst in dry condition. The effect of BFA on the flow behaviour (spread on table and rheology), setting time, temperature of hydration and electrical resistivity was studied in this experimental research. Increasing the amount of BFA in the compositions required extra dosage of water, as a result of particles fineness, tendency for agglomeration and retention/absorption of water molecules. As a consequence, the relative amount of free water diminishes and the flowability is poorer. The introduction of BFA also led to an increase in setting time, while the resistivity obtained from the impedance measurements tends to be lower than the reference paste (ash-free). The higher concentration of mobile species in the pore solution, namely sodium ions introduced by the ash, explains that tendency. The hydration temperature of cement pastes tends to decrease with the level of cement to ash replacement. Between the two tested ashes (from grate and fluidized sand bed furnaces), differences in particle size and shape, in the amount of residual organic matter and concentration of inorganic components define minor changes in the workability and setting behaviour. Therefore, the introduction of biomass fly ashes affects the hardened state features but do not compromise them. (C) 2015 Elsevier Ltd. All rights reserved.
Peer review: yes
URI: http://hdl.handle.net/10773/20884
DOI: 10.1016/j.compositesb.2015.03.019
ISSN: 1359-8368
Publisher Version: 10.1016/j.compositesb.2015.03.019
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.