Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/20760
Title: A DFT study of the NO dissociation on gold surfaces doped with transition metals
Author: Fajin, Jose L. C.
Cordeiro, M. Natalia D. S.
Gomes, Jose R. B.
Keywords: SELECTIVE CATALYTIC-REDUCTION
TOTAL-ENERGY CALCULATIONS
AUGMENTED-WAVE METHOD
NITRIC-OXIDE
DIRECT DECOMPOSITION
AUTOMOTIVE EXHAUST
STORAGE-REDUCTION
CARBON-MONOXIDE
LOW-TEMPERATURE
CO REACTION
Issue Date: 2013
Publisher: AMER INST PHYSICS
Abstract: The NO dissociation on a series of doped gold surfaces (type TMn@Au(111) or TMn@Au(110), with TMn = Ni, Ir, Rh, or Ag and referring n to the number of dopant atoms per unit cell) was investigated through periodic density functional theory calculations. Generally, doping of Au(111) and Au(110) matrices was found to strengthen the interaction with NO species, with the exception of Ag, and was found to increase the energy barrier for dissociation, with the exception of Ni on Au(111). The calculations suggest that the NO dissociation is only possible in the case of the Ir@Au(110) bimetallic surface but only at high temperatures. The increase of the contents of Ir on Au(110) was found to improve significantly the catalytic activity of gold towards the NO dissociation (E-act = similar to 1 eV). Nevertheless, this energy barrier is almost the double of that calculated for NO dissociation on pure Ir(110). However, mixing the two most interesting dopant atoms resulted in a catalyst model of the type Ir@Ni(110) that was found to decrease the energy barrier to values close to those calculated for pure Ir surfaces, i.e., similar to 0.4 eV, and at the same time the dissociation reaction became mildly exothermic. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790602]
Peer review: yes
URI: http://hdl.handle.net/10773/20760
DOI: 10.1063/1.4790602
ISSN: 0021-9606
Publisher Version: 10.1063/1.4790602
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.