Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/20723
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPinol, Rafaelpt
dc.contributor.authorBrites, Carlos D. S.pt
dc.contributor.authorBustamante, Rodneypt
dc.contributor.authorMartinez, Abelardopt
dc.contributor.authorSilva, Nuno J. O.pt
dc.contributor.authorMurillo, Jose L.pt
dc.contributor.authorCases, Rafaelpt
dc.contributor.authorCarrey, Julianpt
dc.contributor.authorEstepa, Carlospt
dc.contributor.authorSosa, Ceciliapt
dc.contributor.authorPalacio, Fernandopt
dc.contributor.authorCarlos, Luis D.pt
dc.contributor.authorMillan, Angelpt
dc.date.accessioned2017-12-07T19:57:10Z-
dc.date.issued2015pt
dc.identifier.issn1936-0851pt
dc.identifier.urihttp://hdl.handle.net/10773/20723-
dc.description.abstractWhereas efficient and sensitive nanoheaters and nanothermometers are demanding tools, in modern bio- and nanomedicine, joining both features in a single nanoparticle still remains a real challenge, despite the recent progress achieved, Most Of it Within the last year. Here we demonstrate a successful realization of this challenge. The heating is magnetically induced, the temperature readout is optical, and the ratiometric thermometric probes are dual-emissive Eu3+/Tb3+ lanthanide complexes. The low thermometer heat capacitance (0.021 center dot K-1) and heater/thermometer resistance (1 K center dot W-1), the high temperature sensitivity (5.8%center dot K-1 at 296 K) and uncertainty (0.5 K), the physiological working temperature range (295-315 K), the readout reproducibility (>99.5%), and the fast time response (0.250 s) make the heater/thermometer nanoplatform proposed here unique. Cells were incubated with the nanoparticles, and fluorescence microscopy permits the mapping of the intracellular local temperature using the pixel-by-pixel ratio of the Eu3+/Tb3+ intensities. Time-resolved thermometry under an ac magnetic field evidences the failure of using Macroscopic thermal parameters to describe heat diffusion at the nanoscale.pt
dc.language.isoengpt
dc.publisherAMER CHEMICAL SOCpt
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147332/PTpt
dc.relationinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F89003%2F2012/PTpt
dc.rightsrestrictedAccesspor
dc.subjectIRON-OXIDE NANOPARTICLESpt
dc.subjectMOLECULAR THERMOMETERpt
dc.subjectLIVING CELLSpt
dc.subjectTEMPERATUREpt
dc.subjectHYPERTHERMIApt
dc.subjectNANOSCALEpt
dc.subjectFIELDpt
dc.titleJoining Time-Resolved Thermometry and Magnetic-Induced Heating in a Single Nanoparticle Unveils Intriguing Thermal Propertiespt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage3134pt
degois.publication.issue3pt
degois.publication.lastPage3142pt
degois.publication.titleACS NANOpt
degois.publication.volume9pt
dc.date.embargo10000-01-01-
dc.relation.publisherversion10.1021/acsnano.5b00059pt
dc.identifier.doi10.1021/acsnano.5b00059pt
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.