Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/20188
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSalgado, J. R. C.pt
dc.contributor.authorPaganin, V. A.pt
dc.contributor.authorGonzalez, E. R.pt
dc.contributor.authorMontemor, M. F.pt
dc.contributor.authorTacchini, I.pt
dc.contributor.authorAnson, A.pt
dc.contributor.authorSalvador, M. A.pt
dc.contributor.authorFerreira, P.pt
dc.contributor.authorFigueiredo, F. M. L.pt
dc.contributor.authorFerreira, M. G. S.pt
dc.date.accessioned2017-12-07T19:38:27Z-
dc.date.issued2013pt
dc.identifier.issn0360-3199pt
dc.identifier.urihttp://hdl.handle.net/10773/20188-
dc.description.abstractThe paper addresses the effect of the carbon support on the microstructure and performance of Pt-Ru-based anodes for direct methanol fuel cells (DMFC), based on the study of four electrodes with a carbon black functionalized with HNO3, a mesoporous carbon (CMK-3), a physical mixture of TiO2 and carbon black and a reference carbon thermally treated in helium atmosphere (HeTT). It is shown that CMK-3 hinders the growth of the electrocatalyst nanoparticles (2.7 nm) and improves their distribution on the support surface, whereas the oxidized surfaces of HNO3 carbon and TiO2+carbon lead to larger (4-4.5 nm), agglomerated particles, and the lowest electrochemical active areas (54 and 26 m(2) g(-1), in contrast with 90 m(2) g(-1) for CMK-3), as determined from CO stripping experiments. However, HNO3 and TiO2 are characterized by the lowest CO oxidation potential (0.4 V vs. RHE), thus suggesting higher CO tolerance for the se electrodes. Tests in DMFC configuration show that the three modified electrodes have clearly better performance than the reference HeTT. The highest power density attained with electrodes supported on carbon treated with HNO3 (65 mW cm(-2)/300 mA cm(-2) at 90 degrees C) and the equally interesting performance of the TiO2-based electrodes (53 mW cm(-2)/300 mA cm(-2)), is a strong indication of the positive effect of the presence of oxygenated groups on the methanol oxidation reaction. The results are interpreted in order to identify separate microstructural (electrocatalyst particle size, porosity) and compositional (oxygenated surface groups, presence of oxide phase) effects on the electrode performance. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.pt
dc.language.isoengpt
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDpt
dc.relationinfo:eu-repo/grantAgreement/FCT/5876-PPCDTI/109843/PTpt
dc.relationinfo:eu-repo/grantAgreement/FCT/COMPETE/132936/PTpt
dc.rightsrestrictedAccesspor
dc.subjectPARTICLE-SIZEpt
dc.subjectFUNCTIONALIZED CARBONpt
dc.subjectCATALYST SUPPORTpt
dc.subjectXRD ANALYSISpt
dc.subjectOXIDATIONpt
dc.subjectALLOYSpt
dc.subjectELECTROOXIDATIONpt
dc.subjectPLATINUMpt
dc.subjectACIDpt
dc.titleCharacterization and performance evaluation of Pt-Ru electrocatalysts supported on different carbon materials for direct methanol fuel cellspt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage910pt
degois.publication.issue2pt
degois.publication.lastPage920pt
degois.publication.titleINTERNATIONAL JOURNAL OF HYDROGEN ENERGYpt
degois.publication.volume38pt
dc.date.embargo10000-01-01-
dc.relation.publisherversion10.1016/j.ijhydene.2012.10.079pt
dc.identifier.doi10.1016/j.ijhydene.2012.10.079pt
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.