Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/19953
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGadim, Tiago D. O.pt
dc.contributor.authorFigueiredo, Andrea G. P. R.pt
dc.contributor.authorRosero-Navarro, Nataly C.pt
dc.contributor.authorVilela, Carlapt
dc.contributor.authorGamelas, Jose A. F.pt
dc.contributor.authorBarros-Timmons, Anapt
dc.contributor.authorPascoal Neto, Carlospt
dc.contributor.authorSilvestre, Armando J. D.pt
dc.contributor.authorFreire, Carmen S. R.pt
dc.contributor.authorFigueiredo, Filipe M. L.pt
dc.date.accessioned2017-12-07T19:30:31Z-
dc.date.issued2014pt
dc.identifier.issn1944-8244pt
dc.identifier.urihttp://hdl.handle.net/10773/19953-
dc.description.abstractThe present study reports the development of a new generation of bio-based nanocomposite proton exchange membranes based on bacterial cellulose (BC) and poly(4-styrene sulfonic acid) (PSSA), produced by in situ free radical polymerization of sodium 4-styrenesulfonate using poly(ethylene glycol) diacrylate (PEGDA) as cross-linker, followed by conversion of the ensuing polymer into the acidic form. The BC nanofibrilar network endows the composite membranes with excellent mechanical properties at least up to 140 degrees C, a temperature where either pure PSSA or Nafion are soft, as shown by dynamic mechanical analysis. The large concentration of sulfonic acid groups in PSSA is responsible for the high ionic exchange capacity of the composite membranes, reaching 2.25 mmol g(-1) for a composite with 83 wt % PSSA/PEGDA. The through-plane protonic conductivity of the best membrane is in excess of 0.1 S cm(-1) at 94 degrees C and 98% relative humidity (RH), decreasing to 0.042 S cm(-1) at 60% RH. These values are comparable or even higher than those of ionomers such as Nafion or polyelectrolytes such as PSSA. This combination of electric and viscoelastic properties with low cost underlines the potential of these nanocomposites as a bio-based alternative to other polymer membranes for application in fuel cells, redox flow batteries, or other devices requiring functional proton conducting elements, such as sensors and actuators.pt
dc.language.isoengpt
dc.publisherAMER CHEMICAL SOCpt
dc.relationinfo:eu-repo/grantAgreement/FCT/COMPETE/126268/PTpt
dc.relationinfo:eu-repo/grantAgreement/FCT/5876-PPCDTI/109843/PTpt
dc.relationinfo:eu-repo/grantAgreement/FCT/COMPETE/132936/PTpt
dc.relationinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63219%2F2009/PTpt
dc.relationinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F84168%2F2012/PTpt
dc.rightsrestrictedAccesspor
dc.subjectFUEL-CELL APPLICATIONSpt
dc.subjectPOLYMER ELECTROLYTEpt
dc.subjectTRANSPORT-PROPERTIESpt
dc.subjectMICROBIAL CELLULOSEpt
dc.subjectACID MEMBRANESpt
dc.subjectX-RAYpt
dc.subjectTEMPERATUREpt
dc.subjectPOLYSTYRENEpt
dc.subjectDIFFRACTIONpt
dc.subjectHYDROLYSISpt
dc.titleNanostructured Bacterial Cellulose-Poly(4-styrene sulfonic acid) Composite Membranes with High Storage Modulus and Protonic Conductivitypt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage7864pt
degois.publication.issue10pt
degois.publication.lastPage7875pt
degois.publication.titleACS APPLIED MATERIALS & INTERFACESpt
degois.publication.volume6pt
dc.date.embargo10000-01-01-
dc.relation.publisherversion10.1021/am501191tpt
dc.identifier.doi10.1021/am501191tpt
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.