Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/18124
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBretos, Iñigopt
dc.contributor.authorJiménez, Ricardopt
dc.contributor.authorTomczyk, Monikapt
dc.contributor.authorRodríguez-Castellón, Enriquept
dc.contributor.authorVilarinho, Paula M.pt
dc.contributor.authorLourdes Calzada, M.pt
dc.date.accessioned2017-07-27T08:50:19Z-
dc.date.available2017-07-27T08:50:19Z-
dc.date.issued2016-
dc.identifier.issn2045-2322pt
dc.identifier.urihttp://hdl.handle.net/10773/18124-
dc.description.abstractApplications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound ─ morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT) ─ are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm−2 is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics.pt
dc.language.isoengpt
dc.publisherNature Publishing Grouppt
dc.relationMINECO project - MAT2013-40489-Ppt
dc.relationCSIC project - PIE-201460E094pt
dc.relationinfo:eu-repo/grantAgreement/FCT/PEst-C/CTM/LA0011/2013pt
dc.relationinfo:eu-repo/grantAgreement/FCT/SFRH/BD/80123/2011pt
dc.rightsopenAccesspor
dc.titleActive layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microelecronic devicespt
dc.typearticle
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage20143-1pt
degois.publication.issue1
degois.publication.lastPage20143-14pt
degois.publication.titleScientific Reportspt
degois.publication.volume6pt
dc.identifier.doi10.1038/srep20143pt
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.