Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/17232
Title: Hilbert boundary value problems with Fermionic weight in R^3
Other Titles: Hilbert boundary value problems with Fermionic weight in R3
Author: Cerejeira, P.
Kähler, U.
Ku, M.
Keywords: Quaternionic analysis
Dirac operator
Hilbert boundary value problems
Issue Date: Mar-2017
Publisher: Springer Verlag
Abstract: We study the Hilbert boundary value problem with Fermionic weight for the Dirac operator on smooth surfaces of R^3. We give the solution to the Hilbert boundary value problem on the half space and the unit ball of R^3, respectively. Then, we present sufficient and necessary conditions for the solvability of the Hilbert boundary value problem in more general domains with smooth boundary in R^3.
Peer review: yes
URI: http://hdl.handle.net/10773/17232
DOI: 10.1007/s00006-016-0686-6
ISSN: 0188-7009
Appears in Collections:CIDMA - Artigos
CHAG - Artigos

Files in This Item:
File Description SizeFormat 
10.1007_s00006-016-0686-6(1).pdfDocumento principal685.95 kBAdobe PDF    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.