Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/16196
Title: On (p, q) − equations with concave terms
Author: Papageorgiou, Nikolaos S.
Santos, Sandrina R. A.
Staicu, Vasile
Keywords: Nonlinear regularity
Nonlinear maximum principle
Critical groups
Nodal solution
Mountain pass theorem
Strong comparison principle
Issue Date: 2016
Publisher: Gakkotosho
Abstract: We consider a (p, q)− equation (1 < q < p, p ≥ 2) with a parametric concave term and a (p − 1)− linear perturbation. We show that the problem have five nontrivial smooth solutions: four of constant sign and the fifth nodal. When q = 2 (i.e., (p, 2) equation) we show that the problem has six nontrivial smooth solutions, but we do not specify the sign of the sixth solution. Our approach uses variational methods, together with truncation and comparison techniques and Morse theory.
Peer review: yes
URI: http://hdl.handle.net/10773/16196
ISSN: 1343-4373
Publisher Version: http://mcm-www.jwu.ac.jp/~aikit/AMSA/index.html
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
AMSA_25(2016)_1-32.pdfdocumento principal201.98 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.