Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/15704
Title: Random extremal solutions of differential inclusions
Author: Bressan, Alberto
Staicu, Vasile
Keywords: Differential inclusions
Lipschitz selections
Extremal solutions
Random solutions
Issue Date: Jun-2016
Publisher: Springer
Abstract: Given a Lipschitz continuous multifunction $F$ on ${\mathbb{R}}^{n}$, we construct a probability measure on the set of all solutions to the Cauchy problem $\dot x\in F(x)$ with $x(0)=0$. With probability one, the derivatives of these random solutions take values within the set $ext F(x)$ of extreme points for a.e.~time $t$. This provides an alternative approach in the analysis of solutions to differential inclusions with non-convex right hand side.
Peer review: yes
URI: http://hdl.handle.net/10773/15704
DOI: 10.1007/s00030-016-0375-0
ISSN: 1021-9722
Appears in Collections:CIDMA - Artigos

Files in This Item:
File Description SizeFormat 
AB-VS-Paper_Revised.pdf314.73 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.