Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/15436
Title: Semilinear neumann equations with indefinite and unbounded potential
Author: Aizicovici, Sergiu
Papageorgiou, Nikolaos S.
Staicu, Vasile
Keywords: Indefinite and unbounded potential
Critical goups
Multiple solutions
Regularity theory
Maximum principle
Nodal solutions
Issue Date: 2016
Publisher: University of Houston
Abstract: We consider a semilinear Neumann problem with an indefinite and unbounded potential, and a Carathéodory reaction term. Under asymptotic conditions on the reaction which make the energy functional coercive, we prove multiplicity theorems producing three or four solutions with sign information on them. Our approach combines variational methods based on the critical point theory with suitable perturbation and truncation techniques, and with Morse theory.
Peer review: yes
URI: http://hdl.handle.net/10773/15436
ISSN: 0362-1588
Publisher Version: http://www.math.uh.edu/~hjm/Vol42-1.html
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
APSPaper_HJM_2016.pdfDocumento principa402.37 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.