Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/15118
Title: The EChO science case
Author: Tinetti, Giovanna
Drossart, Pierre
Eccleston, Paul
Hartogh, Paul
Isaak, Kate
Linder, Martin
Lovis, Christophe
Micela, Giusi
Ollivier, Marc
Puig, Ludovic
Ribas, Ignasi
Snellen, Ignas
Swinyard, Bruce
Allard, France
Barstow, Joanna
Cho, James
Coustenis, Athena
Cockell, Charles
Correia, Alexandre
Decin, Leen
de Kok, Remco
Deroo, Pieter
Encrenaz, Therese
Forget, Francois
Glasse, Alistair
Griffith, Caitlin
Guillot, Tristan
Koskinen, Tommi
Lammer, Helmut
Leconte, Jeremy
Maxted, Pierre
Mueller-Wodarg, Ingo
Nelson, Richard
North, Chris
Palle, Enric
Pagano, Isabella
Piccioni, Guseppe
Pinfield, David
Selsis, Franck
Sozzetti, Alessandro
Stixrude, Lars
Tennyson, Jonathan
Turrini, Diego
Zapatero-Osorio, Mariarosa
Beaulieu, Jean-Philippe
Grodent, Denis
Guedel, Manuel
Luz, David
Norgaard-Nielsen, Hans Ulrik
Ray, Tom
Rickman, Hans
Selig, Avri
Swain, Mark
Banaszkiewicz, Marek
Barlow, Mike
Bowles, Neil
Branduardi-Raymont, Graziella
du Foresto, Vincent Coude
Gerard, Jean-Claude
Gizon, Laurent
Hornstrup, Allan
Jarchow, Christopher
Kerschbaum, Franz
Kovacs, Geza
Lagage, Pierre-Olivier
Lim, Tanya
Lopez-Morales, Mercedes
Malaguti, Giuseppe
Pace, Emanuele
Pascale, Enzo
Vandenbussche, Bart
Wright, Gillian
Ramos Zapata, Gonzalo
Adriani, Alberto
Azzollini, Ruyman
Balado, Ana
Bryson, Ian
Burston, Raymond
Colome, Josep
Crook, Martin
Di Giorgio, Anna
Griffin, Matt
Hoogeveen, Ruud
Ottensamer, Roland
Irshad, Ranah
Middleton, Kevin
Morgante, Gianluca
Pinsard, Frederic
Rataj, Mirek
Reess, Jean-Michel
Savini, Giorgio
Schrader, Jan-Rutger
Stamper, Richard
Winter, Berend
Abe, L.
Abreu, M.
Achilleos, N.
Ade, P.
Adybekian, V.
Affer, L.
Agnor, C.
Agundez, M.
Alard, C.
Alcala, J.
Allende Prieto, C.
Alonso Floriano, F. J.
Altieri, F.
Alvarez Iglesias, C. A.
Amado, P.
Andersen, A.
Aylward, A.
Baffa, C.
Bakos, G.
Ballerini, P.
Banaszkiewicz, M.
Barber, R. J.
Barrado, D.
Barton, E. J.
Batista, V.
Bellucci, G.
Belmonte Aviles, J. A.
Berry, D.
Bezard, B.
Biondi, D.
Blecka, M.
Boisse, I.
Bonfond, B.
Borde, P.
Boerner, P.
Bouy, H.
Brown, L.
Buchhave, L.
Budaj, J.
Bulgarelli, A.
Burleigh, M.
Cabral, A.
Capria, M. T.
Cassan, A.
Cavarroc, C.
Cecchi-Pestellini, C.
Cerulli, R.
Chadney, J.
Chamberlain, S.
Charnoz, S.
Jessen, N. Christian
Ciaravella, A.
Claret, A.
Claudi, R.
Coates, A.
Cole, R.
Collura, A.
Cordier, D.
Covino, E.
Danielski, C.
Damasso, M.
Deeg, H. J.
Delgado-Mena, E.
Del Vecchio, C.
Demangeon, O.
De Sio, A.
De Wit, J.
Dobrijevic, M.
Doel, P.
Dominic, C.
Dorfi, E.
Eales, S.
Eiroa, C.
Espinoza Contreras, M.
Esposito, M.
Eymet, V.
Fabrizio, N.
Fernandez, M.
Femena Castella, B.
Figueira, P.
Filacchione, G.
Fletcher, L.
Focardi, M.
Fossey, S.
Fouque, P.
Frith, J.
Galand, M.
Gambicorti, L.
Gaulme, P.
Garcia Lopez, R. J.
Garcia-Piquer, A.
Gear, W.
Gerard, J. -C.
Gesa, L.
Giani, E.
Gianotti, F.
Gillon, M.
Giro, E.
Giuranna, M.
Gomez, H.
Gomez-Leal, I.
Gonzalez Hernandez, J.
Gonzalez Merino, B.
Graczyk, R.
Grassi, D.
Guardia, J.
Guio, P.
Gustin, J.
Hargrave, P.
Haigh, J.
Hebrard, E.
Heiter, U.
Heredero, R. L.
Herrero, E.
Hersant, F.
Heyrovsky, D.
Hollis, M.
Hubert, B.
Hueso, R.
Israelian, G.
Iro, N.
Irwin, P.
Jacquemoud, S.
Jones, G.
Jones, H.
Justtanont, K.
Kehoe, T.
Kerschbaum, F.
Kerins, E.
Kervella, P.
Kipping, D.
Koskinen, T.
Krupp, N.
Lahav, O.
Laken, B.
Lanza, N.
Lellouch, E.
Leto, G.
Licandro Goldaracena, J.
Lithgow-Bertelloni, C.
Liu, S. J.
Lo Cicero, U.
Lodieu, N.
Lognonne, P.
Lopez-Puertas, M.
Lopez-Valverde, M. A.
Rasmussen, I. Lundgaard
Luntzer, A.
Machado, P.
MacTavish, C.
Maggio, A.
Maillard, J. -P.
Magnes, W.
Maldonado, J.
Mall, U.
Marquette, J. -B.
Mauskopf, P.
Massi, F.
Maurin, A. -S.
Medvedev, A.
Michaut, C.
Miles-Paez, P.
Montalto, M.
Montanes Rodriguez, P.
Monteiro, M.
Montes, D.
Morais, H.
Morales, J. C.
Morales-Calderon, M.
Morello, G.
Moro Martin, A.
Moses, J.
Moya Bedon, A.
Murgas Alcaino, F.
Oliva, E.
Orton, G.
Palla, F.
Pancrazzi, M.
Pantin, E.
Parmentier, V.
Parviainen, H.
Pena Ramirez, K. Y.
Peralta, J.
Perez-Hoyos, S.
Petrov, R.
Pezzuto, S.
Pietrzak, R.
Pilat-Lohinger, E.
Piskunov, N.
Prinja, R.
Prisinzano, L.
Polichtchouk, I.
Poretti, E.
Radioti, A.
Ramos, A. A.
Rank-Lueftinger, T.
Read, P.
Readorn, K.
Rebolo Lopez, R.
Rebordao, J.
Rengel, M.
Rezac, L.
Rocchetto, M.
Rodler, F.
Sanchez Bejar, V. J.
Lavega, A. Sanchez
Sanroma, E.
Santos, N.
Sanz Forcada, J.
Scandariato, G.
Schmider, F. -X.
Scholz, A.
Scuderi, S.
Sethenadh, J.
Shore, S.
Showman, A.
Sicardy, B.
Sitek, P.
Smith, A.
Soret, L.
Sousa, S.
Stiepen, A.
Stolarski, M.
Strazzulla, G.
Tabernero, H. M.
Tanga, P.
Tecsa, M.
Temple, J.
Terenzi, L.
Tessenyi, M.
Testi, L.
Thompson, S.
Thrastarson, H.
Tingley, B. W.
Trifoglio, M.
Martin Torres, J.
Tozzi, A.
Turrini, D.
Varley, R.
Vakili, F.
de Val-Borro, M.
Valdivieso, M. L.
Venot, O.
Villaver, E.
Vinatier, S.
Viti, S.
Waldmann, I.
Waltham, D.
Ward-Thompson, D.
Waters, R.
Watkins, C.
Watson, D.
Wawer, P.
Wawrzaszk, A.
White, G.
Widemann, T.
Winek, W.
Wisniowski, T.
Yelle, R.
Yung, Y.
Yurchenko, S. N.
Keywords: Exoplanets
Spectroscopy
Atmospheric science
IR astronomy
Space missions
Issue Date: Dec-2015
Publisher: Springer
Abstract: The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
Peer review: yes
URI: http://hdl.handle.net/10773/15118
DOI: 10.1007/s10686-015-9484-8
ISSN: 0922-6435
Appears in Collections:CIDMA - Artigos
DFis - Artigos
GGDG - Artigos

Files in This Item:
File Description SizeFormat 
EChO.pdf8.41 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.