Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/15057
Title: Time-dependent operators on some non-orientable projective orbifolds
Author: Krausshar, R. S.
Rodrigues, M. M.
Vieira, N.
Keywords: Clifford and harmonic analysis
Heat operator
Schrodinger operator
Parabolic Dirac operator
Conformally flat orbifolds
Spin and pin structures
Non-orientable manifolds
Issue Date: Dec-2015
Publisher: Wiley
Abstract: In this paper we present an explicit construction for the fundamental solution of the heat operator, the Schrödinger operator and related first order parabolic Dirac operators on a class of some conformally flat non-orientable orbifolds. More concretely, we treat a class of projective cylinders and tori where we can study parabolic monogenic sections with values in different pin bundles. We present integral representation formulas together with some elementary tools of harmonic analysis that enable us to solve boundary value problems on these orbifolds.
Peer review: yes
URI: http://hdl.handle.net/10773/15057
DOI: 10.1002/mma.3492
ISSN: 1099-1476
Appears in Collections:CIDMA - Artigos
CHAG - Artigos

Files in This Item:
File Description SizeFormat 
artigo34_VF.pdfDocumento principal447.28 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.