Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/15036
Title: Sobolev type fractional dynamic equations and Optimal multi-integral controls with fractional nonlocal conditions
Author: Debbouche, Amar
Torres, Delfim F. M.
Keywords: Sobolev type equations
Fractional evolution equations
Optimal control
Nonlocal conditions
Mild solutions
Issue Date: Feb-2015
Publisher: Springer Verlag
Abstract: We prove existence and uniqueness of mild solutions to Sobolev type fractional nonlocal dynamic equations in Banach spaces. The Sobolev nonlocal condition is considered in terms of a Riemann-Liouville fractional derivative. A Lagrange optimal control problem is considered, and existence of a multi-integral solution obtained. Main tools include fractional calculus, semigroup theory, fractional power of operators, a singular version of Gronwall's inequality, and Leray-Schauder fixed point theorem. An example illustrating the theory is given.
Peer review: yes
URI: http://hdl.handle.net/10773/15036
DOI: 10.1515/fca-2015-0007
ISSN: 1311-0454
Appears in Collections:CIDMA - Artigos

Files in This Item:
File Description SizeFormat 
1409.6028v1.pdf259.26 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.