Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/14981
Title: Atomic and molecular decompositions in variable exponent 2-microlocal spaces and applications
Author: Almeida, Alexandre
Caetano, António
Keywords: Variable exponents
Besov–Triebel–Lizorkin spaces
Atoms and molecules
Sobolev embeddings
Issue Date: 28-Nov-2015
Publisher: Elsevier
Abstract: In this article we study atomic and molecular decompositions in 2-microlocal Besov and Triebel–Lizorkin spaces with variable integrability. We show that, in most cases, the convergence implied in such decompositions holds not only in the distributions sense, but also in the function spaces themselves. As an application, we give a simple proof for the denseness of the Schwartz class in such spaces. Some other properties, like Sobolev embeddings, are also obtained via atomic representations.
Peer review: yes
URI: http://hdl.handle.net/10773/14981
DOI: 10.1016/j.jfa.2015.11.010
ISSN: 0022-1236
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
151215_atomic_molecular.pdfDocumento principal494.93 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.