DSpace
 
  Repositório Institucional da Universidade de Aveiro > Departamento de Matemática > MAT - Teses de doutoramento >
 Análise bayesiana de séries temporais de valores inteiros
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/4571

title: Análise bayesiana de séries temporais de valores inteiros
authors: Silva, Nélia Maria Marques da
advisors: Pereira, Isabel Maria Simões
Silva, Maria Eduarda da Rocha Pinto Augusto da
keywords: Análise bayesiana
Teoria da estimação
Análise de séries temporais
issue date: 2005
publisher: Universidade de Aveiro
abstract: Modelar senes temporais de valores inteiros não negativos (ou senes temporais de contagem) pareceu-nos um desafio bastante aliciante, não só devido à sua importância, como também ao facto de ser um tema ainda pouco explorado, contrariamente à modelação de séries temporais com suporte nos reais. Vários modelos para processos estacionários com distribuição marginal discreta têm sido propostos. Um desses modelos particularmente usado para séries de contagem é o processo Auto-Regressivo de valores inteiros de ordem p, designado por INAR(p). De uma forma geral, este trabalho tem como principal objectivo desenvolver uma abordagem bayesiana aos problemas da estimação de parâmetros e da predição de observações futuras, do ponto de vista pontual e intervalar, nos modelos INAR. Simultaneamente é feita um estudo comparativo com a abordagem clássica. Consideram-se modelos baseados no processo Auto-Regressivo de valores inteiros de 1 a ordem com distribuição marginal de Poisson, designados abreviadamente por PoINAR(1). Inicialmente o estudo incide sobre o modelo PoINAR(1), depois são consideradas réplicas independentes desse modelo e firü~IrTfente,na6 íiiipõnaó-a exi~fênêll:r deinâependência-entre- obs-ervações; faz,;; se uma generalização do modelo PoINAR(1) para um painel com r unidades e n períodos de tempo. Os modelos considerados são comparados e ilustrados através de estudos de simulação e aplicados a dados reais. Todo o trabalho desenvolvido envolve grandes exigências computacionais recorrendo-se intensivamente a alguns dos mais actuais métodos de simulação, com natural destaque para os métodos de simulação de Monte Carla via cadeias de Markov.

Modelling non-negative integer-valued time series is, at the moment, a challenge, not only because of their applicability but also beca use it is still much of an open problem. In the last decades, severa 1 models for stationary processes with discrete marginal distribution have been proposed in the literature. One of the most promising models for time series of counts is the Integer-valued AutoRegressive, INAR, processo The purpose of this essay is to develop a Bayesian approach to the problems of estimation and prediction of future observations in I NAR processes. A comparative study between Bayesian and classical methodologies is carried out. Several models based on the INAR process are considered, the first of which is the first order INAR model with Poisson marginal distribut;on, denoted PoINAR(1). This process ;s then considered in the context of a panel of r independent replicates. Later, the hypothesis of independence between observed units is dropped, resulting in a model denoted by SUINAR(1). Results are iIIustrated using simulation studies and real data sets. Ali the work presented in this thesis, involves a considerable amount of computation -üsln-g--som-e- of -the -most--current simulation metheds fQGusing, naturally, on the Markov chain Monte Carlo methods.
description: Doutoramento em Matemática
URI: http://hdl.handle.net/10773/4571
appears in collectionsUA - Teses de doutoramento
MAT - Teses de doutoramento

files in this item

file description sizeformat
NS193863.pdf60.33 MBAdobe PDFview/open
statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2