DSpace
 
  Repositório Institucional da Universidade de Aveiro > Departamento de Electrónica, Telecomunicações e Informática > DETI - Teses de doutoramento >
 EpiGauss : caracterização espacio-temporal da actividade cerebral em epilepsia
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/2209

title: EpiGauss : caracterização espacio-temporal da actividade cerebral em epilepsia
authors: Fernandes, José Maria Amaral
advisors: Cunha, João Paulo
keywords: Engenharia electrotécnica
Epilepsia
Electroencefalogramas
issue date: 2007
publisher: Universidade de Aveiro
abstract: A epilepsia é uma patologia cerebral que afecta cerca de 0,5% da população mundial. Nas epilepsias focais, o principal objectivo clínico é a localização da zona epileptogénica (área responsável pelas crises), uma informação crucial para uma terapêutica adequada. Esta tese é centrada na caracterização da actividade cerebral electromagnética do cérebro epiléptico. As contribuições nesta área, entre a engenharia e neurologia clínica, são em duas direcções. Primeiro, mostramos que os conceitos associados às pontas podem ser imprecisos e não ter uma definição objectiva, tornando necessária uma reformulação de forma a definir uma referência fiável em estudos relacionados com a análise de pontas. Mostramos que as características das pontas em EEG são estatisticamente diferentes das pontas em MEG. Esta constatação leva a concluir que a falta de objectividade na definição de ponta na literatura pode induzir utilizações erradas de conceitos associados ao EEG na análise de MEG. Também verificamos que o uso de conjuntos de detecções de pontas efectuadas por especialistas (MESS) como referência pode fornecer resultados enganadores quando apenas baseado em critérios de consenso clínico, nomeadamente na avaliação da sensibilidade e especificidade de métodos computorizados de detecção de pontas Em segundo lugar, propomos o uso de métodos estatísticos para ultrapassar a falta de precisão e objectividade das definições relacionadas com pontas. Propomos um novo método de neuroimagem suportado na caracterização de geradores electromagnéticos – EpiGauss – baseado na análise individual dos geradores de eventos do EEG que explora as suas estruturas espacio-temporais através da análise de “clusters”. A aplicação de análise de “clusters” à análise geradores de eventos do EEG tem como objectivo usar um método não supervisionado, para encontrar estruturas espacio-temporais dps geradores relevantes. Este método, como processo não supervisionado, é orientado a utilizadores clínicos e apresenta os resultados sob forma de imagens médicas com interpretação similar a outras técnicas de imagiologia cerebral. Com o EpiGauss, o utilizador pode determinar a localização estatisticamente mais provável de geradores, a sua estabilidade espacial e possíveis propagações entre diferente áreas do cérebro. O método foi testado em dois estudos clínicos envolvendo doentes com epilepsia associada aos hamartomas hipotalâmicos e o outro com doentes com diagnóstico de epilepsia occipital. Em ambos os estudos, o EpiGauss foi capaz de identificar a zona epileptogénica clínica, de forma consistente com a história e avaliação clínica dos neurofisiologistas, fornecendo mais informação relativa à estabilidade dos geradores e possíveis percursos de propagação da actividade epileptogénica contribuindo para uma melhor caracterização clínica dos doentes. A conclusão principal desta tese é que o uso de técnicas não supervisionadas, como a análise de “clusters”, associadas as técnicas não-invasivas de EMSI, pode contribuir com um valor acrescido no processo de diagnóstico clínico ao fornecer uma caracterização objectiva e representação visual de padrões complexos espaciotemporais da actividade eléctrica epileptogénica.

Epilepsy is a brain pathology that affects 0.5% of the world population. In focal epilepsies, the main clinical objective is the localization of the epileptogenic zone (brain area responsible for the epileptic seizures – EZ), a key information to decide an adequate therapeutic approach. This thesis is centred on electromagnetic activity characterization of the epileptic brain. Our contribution to this boundary area between engineering and clinical neurology is two-folded. First we show that spike related clinical concepts can be unprecise and some do not have objective definitions making necessary a reformulation in order to have a reliable reference in spike related studies. We show that EEG spike wave quantitative features are statistically different from their MEG counterparts. This finding leads to the conclusion that the lack of objective spike feature definitions in the literature can induce the wrong usage of EEG feature definition in MEG analysis. We also show that the use of multi-expert spike selections sets (MESS) as gold standard, although clinically useful, may be misleading whenever defined solely in terms of clinical agreement criteria, namely as references for automatic spike detection algorithms in sensitivity and specificity method analysis. Second, we propose the use of statistical methods to overcome some lack of precision and objectivity in spike related definitions. In this context, we propose a new ElectroMagnetic Source Imaging (EMSI) method – EpiGauss – based on cluster analysis that explores both spatial and temporal information contained in individual events sources analysis characterisation. This automatic cluster method for the analysis of spike related electric generators based in EEG is used to provide an unsupervised tool to find their relevant spatio-temporal structures. This method enables a simple unsupervised procedure aimed for clinical users and presents its results in an intuitive representation similar to other brain imaging techniques. With EpiGauss, the user is able to determine statistically probable source locations, their spatial stability and propagation patterns between different brain areas. The method was tested in two different clinical neurophysiology studies, one with a group of Hypothalamic Hamartomas and another with a group of Occipital Epilepsy patients. In both studies EpiGauss identified the clinical epileptogenic zone, consistent with the clinical background and evaluation of neurophysiologists, providing further information on stability of source locations and their probable propagation pathways that enlarges their clinical interpretation. This thesis main conclusion is that the use of unsupervised techniques, such as clustering, associated with EMSI non-invasive techniques, can bring an added value in clinical diagnosis process by providing objective and visual representation of complex epileptic brain spatio-temporal activity patterns.
description: Doutoramento em Engenharia Electrotécnica
URI: http://hdl.handle.net/10773/2209
appears in collectionsUA - Teses de doutoramento
DETI - Teses de doutoramento

files in this item

file description sizeformat
2008000669.pdf14.76 MBAdobe PDFview/open
statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2