Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/19726
Title: Modeling of electrical conductivity in the proton conductor Ba0.85K0.15ZrO3-delta
Author: Sherafat, Z.
Paydar, M. H.
Antunes, I.
Nasani, N.
Brandao, A. D.
Fagg, D. P.
Keywords: STEAM ELECTROLYSIS
CONTAINING ATMOSPHERES
HYDROGEN-PRODUCTION
SOLID ELECTROLYTES
HOLE CONDUCTION
OXIDES
CELLS
MECHANOSYNTHESIS
MEMBRANE
BAZRO3
Issue Date: 2015
Publisher: PERGAMON-ELSEVIER SCIENCE LTD
Abstract: The electrical conductivity of Ba0.85K0.15ZrO3-delta (BKZ) has been studied as a function of both oxygen and water vapor partial pressure in the temperature range of 550-700 degrees C, to determine the partial conductivities of protons, holes, and oxygen vacancies from the defect model. It is shown that p-type conduction is dominant in dry oxidative atmospheres, while in wet oxidative atmospheres, a conduction transition from proton to hole conduction is found with increasing temperature. On the contrary, in wet nitrogen atmosphere, proton conduction is dominant over the whole temperature range. The calculated activation energies for oxide-ion, electron-hole and proton conduction are 0.86, 1.36 and 0.59 eV, respectively. The standard solution enthalpy for water dissolution is -90 kJ/mol, which is lower in absolute terms than that typically reported for doped barium cerates but very close to that reported for BaZr0.85Y0.15O3-delta. (C) 2015 Elsevier Ltd. All rights reserved.
Peer review: yes
URI: http://hdl.handle.net/10773/19726
DOI: 10.1016/j.electacta.2015.03.018
ISSN: 0013-4686
Publisher Version: 10.1016/j.electacta.2015.03.018
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.