Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/19190
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMagalhaes, Ana L.pt
dc.contributor.authorVaz, Raquel V.pt
dc.contributor.authorGoncalves, Ricardo M. G.pt
dc.contributor.authorDa Silva, Francisco A.pt
dc.contributor.authorSilva, Carlos M.pt
dc.date.accessioned2017-12-07T19:04:02Z-
dc.date.issued2013pt
dc.identifier.issn0896-8446pt
dc.identifier.urihttp://hdl.handle.net/10773/19190-
dc.description.abstractThe tracer diffusion coefficients, D-12, are fundamental properties for the design and simulation of rate-controlled processes. Nowadays, under the scope of the biorefinery concept and strict environmental legislation, the D-12 values are increasingly necessary for extractions, reactions, and chromatographic separations carried out at supercritical conditions, particularly using carbon dioxide. Hence, the main objective of this work is the development of accurate and simple models for the pure prediction of D-12 values in supercritical CO2. Two modified Stokes-Einstein equations (mSE(1) and mSE(2)) are proposed and validated using a large database comprehending extremely distinct molecules in terms of size, molecular weight, polarity and sphericity. The global deviations achieved by the mSE1 (Eqs. (2) and (13)) and mSE(2) (Eqs. (5), (13), (3), (4)) models are only 6.38% and 6.75%, respectively, in contrast to the significant errors provided by well known predictive correlations available in the literature: Wilke-Chang, 12.17%; Tyn-Calus, 17.01%; Scheibel, 19.04%; Lusis-Ratcliff, 27.32%; Reddy-Doraiswamy, 79.34%; Lai-Tan, 25.82%. Furthermore, the minimum and maximum deviations achieved by the new models are much smaller than those of the reference equations adopted for comparison. In conclusion, our mSE(1) and mSE(2) models can be recommended for the prediction of tracer diffusivities in supercritical CO2. (C) 2013 Elsevier B.V. All rights reserved.pt
dc.language.isoengpt
dc.publisherELSEVIER SCIENCE BVpt
dc.relationinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F46776%2F2008/PTpt
dc.relationinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F69257%2F2010/PTpt
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/228589/EUpt
dc.relationinfo:eu-repo/grantAgreement/FCT/COMPETE/132936/PTpt
dc.rightsrestrictedAccesspor
dc.subjectBINARY DIFFUSION-COEFFICIENTSpt
dc.subjectSIMULATED MOVING-BEDpt
dc.subjectFLUID CHROMATOGRAPHY SFCpt
dc.subjectIMPULSE-RESPONSE METHODpt
dc.subjectTAYLOR DISPERSION TECHNIQUEpt
dc.subjectPARTIAL MOLAR VOLUMESpt
dc.subjectLENNARD-JONES FLUIDpt
dc.subjectACID METHYL-ESTERSpt
dc.subjectHARD-SPHERE THEORYpt
dc.subjectINFINITE-DILUTIONpt
dc.titleAccurate hydrodynamic models for the prediction of tracer diffusivities in supercritical carbon dioxidept
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage15pt
degois.publication.lastPage27pt
degois.publication.titleJOURNAL OF SUPERCRITICAL FLUIDSpt
degois.publication.volume83pt
dc.date.embargo10000-01-01-
dc.relation.publisherversion10.1016/j.supflu.2013.08.001pt
dc.identifier.doi10.1016/j.supflu.2013.08.001pt
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.